Narration et mathématiques: l’utilisation des graphes au cinéma et dans la bande dessinée (Chapitre 4)

Chapitre 4 : Écrire sur différentes surfaces.

Dans ce chapitre, notre modèle sert principalement à l’exploration de nouvelles potentialités du médium de la bande dessinée ou des histoires en images lorsque nous les superposons sur différentes surfaces. La grande rareté des artistes travaillant sur les surfaces que nous étudions explique cette tendance. Nous avons jusqu’ici présenté nos histoires sur une seule et même surface ; le plan. Nous explorons à présent différentes surfaces sur lesquelles nous pouvons inscrire des graphes et par conséquent sur lesquelles nous pouvons écrire des histoires. Nous utiliserons une définition de surface équivalente à celle acceptée en topologie (43). (Munkres, p.225), c’est-à-dire que la surface ressemble localement au plan. Dans notre cas, cela permet simplement d’admettre que nous pouvons partout y dessiner comme nous pouvons dessiner sur un plan dans le but d’y présenter des histoires à l’aide d’images. En topologie, le terme 2-manifold est généralement utilise (44). Une surface peut-être bornée ou non, par exemple la sphère est bornée, mais le plan cartésien ne l’est pas puisqu’il existe au moins une direction vers laquelle elle se prolonge indéfiniment. Notre définition de surface permet entre autres d’avoir des surfaces qui ne peuvent pas s’insérer dans un monde tridimensionnel sans se croiser elle-même. La fameuse bouteille de Klein, proposée par le mathématicien allemand Félix Klein, est construite de la sorte (Barr, p.38). Heureusement, nous pouvons représenter ces surfaces en deux dimensions à l’aide des polygones fondamentaux de ces surfaces (45). Nous construisons ces polygones de sorte qu’en donnant à chaque arête une orientation et en joignant deux à deux ces arêtes nous pouvons théoriquement construire ces surfaces indépendamment du nombre de dimensions requises pour éviter sa propre intersection. Nous reviendrons sur ces détails.

Figure 1

La première extension en trois dimensions apparaît naturellement avec la juxtaposition de plans dans l’espace. En 2013, l’artiste Daniel Merlin Goodbrey exposa son histoire Black Hats in Hell sur plusieurs murs (Gravett, p.136-137) (Figure 1), œuvre qui s’apparente en ce sens au projet de la plus grande bande dessinée au monde créée en 2012 par 11 écrivains et 111 dessinateurs de l’école de dessin Émile Cohl à Lyon (46). Dans ces deux œuvres, le canevas reste localement planaire, mais l’ensemble du canevas est une composition de différents plans, en l’occurrence de murs ou de surfaces de lieux publics telles les clôtures. Il existe une panoplie d’autres surfaces tridimensionnelles qui peuvent servir de canevas autre que la juxtaposition de plan.

Figure 2

Figure 2: Termsphere par Dick Termes. Source: site personnel de Termes

Nous débutons avec la sphère puisqu’elle se visualise aisément. L’idée de présenter ces scènes sur une sphère a déjà été utilisée par l’artiste Dick Termes. L’artiste peint des scènes qui seraient perçues de l’intérieur d’une sphère imaginaire entourant un observateur dans un monde diégétique. L’illusion de regard est recréée par les points de fuites qu’il dispose sur cette sphère en imaginant les directions vers lesquelles porte le regard de l’observateur dans la diégèse. Ces scènes imaginées sont ensuite peintes sur l’extérieur d’une sphère. Le résultat, nommé termesphere par l’artiste, est donc une représentation inside-out de cette scène imaginée (Termes, p.243-244). En acceptant la possibilité d’avoir des bandes dessinées en une seule case, nous pouvons considérer les termespheres comme des bandes dessinées  sans cadre, ou dont le cadre est délimité directement par l’espace de la sphère. (Figure 2) Cela est une conséquence de l’aspect borné de la sphère. Nous pouvons imaginer une série de bandes dessinées à même une sphère. Scott McCloud a déjà entrevu cette idée, mais sans toutefois en offrir des exemples complets. Dans Understanding Comics, il présente des sphères sur lesquelles des cases de bande dessinée se trouvent; soit des portraits de personnages importants de l’histoire du médium y figurent, soit il y résume les concepts importants de son ouvrage (McCloud 1993, p. 4 et 214). (Figure 3)

Figure 3

Figure 3: McCloud, Scott. 1993. Understanding Comics. New York : Harper Perrenial. © 1993 Scott McCloud

McCloud se sert de cette image pour représenter le monde de la bande dessinée, nous constatons tout de même que l’idée d’y dessiner des histoires et réalisable. Marc-Anthoine Mathieu pousse un peu plus loin cette hypothèse en laissant comprendre qu’en fait, la bande dessinée qui se lit dans La 2,333e dimension de la série des Julius Corentin Acquefaques existe en fait sur une sphère et qu’il en est de même pour les autres ouvrages de bande dessinée comme celui de La Mouche de Lewis Trondheim (Mathieu 2004, p.33-35). Ceci consiste en une première exploration d’une histoire en plusieurs cases utilisant la sphère comme support. Mathieu n’insiste pas sur la justification de l’usage de ce support pas plus qu’il fait un usage propre de la géométrie et de la topologie de la sphère, ce à quoi nous remédions dans les prochains paragraphes. (Figure 4)

Figure 4

Figure 4: Marc-Antoine Mathieu, Julius Corentin Acquefaques, prisonnier des rèves : La 2,333e dimension. ©2004 Guy Delcourt productions

Nous pouvons représenter une sphère centrée à l’origine de l’espace euclidien à trois dimensions par l’équation à trois variables x²+y²+z²=r² pour r un rayon donné (Pressley, p.61). L’expression de la sphère en une équation a permis nombre d’explorations. Notamment, les mathématiciens et cartographes ont travaillé sur plusieurs relations bijectives entre le plan et la sphère, c’est-à-dire sur ces méthodes de projection de la sphère vers le plan et vice versa. La projection entre les deux surfaces peut conserver ou modifier certaines caractéristiques. Si deux projections sont équivalentes, c’est que les aires sont conservées alors qu’elle est dite isométrique si les distances sont conservées (Pressley, p.106-121). Euler a démontré qu’il n’existe pas de projection isométrique entre la sphère et le plan (Pressley, p.234). Finalement, si les angles d’intersection des courbes sont conservés, nous disons que la projection est conforme. Une projection très utilisée et probablement connue depuis l’antiquité se nomme la projection stéréographique (Snyder, p.154). La bijection s’obtient en situant le Pôle Sud d’une sphère sur un plan et en traçant des rayons à partir du Pôle Nord qui se dirigent vers le plan. Chaque rayon croise la sphère en un point et poursuit vers le la plan jusqu’au point où il est projeté (Gamelin, p.11-13). (Figure 5)

Figure 5

Figure 5: La Projection Stéréographique Source : http://www.dimensions-math.org/Dim_CH1_E.htm

La projection stéréographique est une transformation conforme, c’est-à-dire qu’elle conserve l’angle d’intersection entre deux courbes d’une surface à l’autre. Cette propriété est d’ailleurs celle qui a permis à divers photographes d’obtenir des images représentant l’espace tridimensionnel de manières novatrices et cohérentes (Lambert, p.44).

Dans notre cas, étudions comment la projection d’une surface vers une autre permet de jouer avec la structure de l’histoire. Dans la projection stéréographique, le point à l’infini dans toutes les directions est projeté sur le Pôle Nord de la sphère. Nous pouvons à l’aide de cette propriété donner un deuxième sens à un graphe en étoile. Reprenons l’exemple de l’histoire en étoile dans laquelle les personnages s’éloignent d’un évènement dramatique. En projetant ce graphe vers la sphère, les branches vont à la fois s’éloigner de l’incident, au Pôle Sud, mais les arêtes vont également toutes se diriger vers le Pôle Nord. Alors que la version de cette histoire sur le plan indique que les personnages se quittent à tout jamais, la version sur la sphère laisse sous-entendre qu’ils vont se recroiser malgré tout. Cet exemple démontre l’importance du choix de la surface sur laquelle une histoire en images est présentée.

Figure 6

Figure 6:Spirales sphériques (1958) par Escher, xylogravure, diamètre 32 cm.

La particularité d’être conforme permet également de travailler avec les spirales telles que vues précédemment. Pour ce faire, nous devons définir un type de courbes sphériques nommées loxodromies. Celles-ci croisent les méridiens avec un angle constant (Pressley, p.83). Si cet angle diffère de 90 degrés, nous obtenons une double spirale sur la sphère. En effet, la courbe s’enroule indéfiniment autour de chaque Pôle sans jamais les atteindre. Maurelius Escher avait remarqué la beauté de ces courbes et les œuvres Surface sphérique avec poissons et Spirales sphériques toutes deux datant de 1958 en font l’usage (Locher, p.231-232). (Figure 6) Pour un usage en bande dessinée, plusieurs options s’offrent à nous. Soulignons premièrement que ces courbes deviennent également des spirales, lorsque projetées sur le plan. Si nous prenons une loxodromie partant du Pôle Sud au Pôle Nord, sa projection sur le plan résulte en une spirale qui s’enroule autour de l’origine et qui diverge vers l’infini. (Figure 7)

Figure 7

Figure 7: spirales et loxodromies. Source : http://hop41.deviantart.com/art/Riemann-Loxodrome-110253875

En appliquant une rotation à cette sphère avant d’appliquer la projection stéréographique nous pouvons construire des spirales à deux points de convergences sur le plan tel qu’étudié au deuxième chapitre. En tournant légèrement la sphère, nous déplaçons le Pôle Nord; or, la projection stéréographique s’effectue malgré tout à partir du point le plus élevé de la sphère. Il en résulte que le Pôle Nord autour duquel s’enroule la loxodromie n’est plus projeté vers le point à l’infini. Par conséquent, cette section de la spirale devient également visible sur le plan (Mumford, Series et Wright, p.62-67) comme nous pouvons l’observer dans la photographie de Paul Nylander. (Figure 8).

Figure 8

Figure 8: Double spiral by Paul Nylander. © Paul Nylander bugman123.com

L’artiste Huang Yong Ping, présenta une structure de la sorte pour son œuvre Carte du Monde. L’artiste utilise un dallage de la sphère par une loxodromie qu’il déroule ensuite pour en offrir une version strictement planaire. Sur cette loxodromie déroulée, il situe une panoplie de désastres futurs aux endroits où ils auront théoriquement lieu sur le globe (Rosenberg et Grafton, p.216). Par la relation des désastres avec leurs lieux d’occurrences, cette œuvre s’articule comme récit-carte sur une loxodromie lui-même dallage de la carte. (Figure 9)

Figure 10

Figure 9: Carte du Monde par Huang Yong Ping. Rosenberg, David and Anthony Grafton. 2010. Cartographies of Time: A History of the Timeline. New York: Princeton Architectural Press.

Nous constatons que plusieurs théorèmes valables pour le plan restent également valables pour la sphère. Le théorème de Jordan et le théorème de Kuratowski restent vrais lorsque leur énoncé concerne la sphère plutôt que le plan (Bondy, p.247). Dans le cas du théorème de Jordan, son application sur la sphère amène tout de même un élément nouveau. Sur le plan, une courbe simple fermée sépare le plan entre l’intérieur et l’extérieur de la sphère. L’extérieur de la courbe est alors un espace infini, non borné. À l’opposé, le principe d’intérieur et d’extérieur peut perdre son sens sur la sphère. Tout d’abord, les deux espaces disjoints obtenus en traçant une courbe fermée sur la sphère sont tous les deux bornés. De plus, les grands cercles de la sphère séparent la sphère en deux espaces équivalents, c’est-à-dire les cercles de grandeur maximale de la sphère, dont l’équateur est un bon exemple, séparent la sphère en deux espaces d’aires égales. D’un point de vue topologique, nous pouvons considérer que la projection stéréographique avec l’ajout du point à l’infini qu’est le Pôle Nord est un exemple de compactification d’une surface (Munkres, p.185). La compactification permet de passer à une surface d’aire infinie à celle d’une aire finie.

Ces courbes simples fermées peuvent alors servir à présenter des histoires au sens vaguement différent. Par exemple, prenons le cas d’une histoire cyclique sur le plan où un personnage est pris sur un cercle à l’intérieur du cercle se trouve le paradis et à l’extérieur duquel se trouve l’enfer. L’effet d’avoir un espace infini relié à l’enfer contrairement à un petit espace restreint pour le paradis dirige la lecture du lecteur. Il est difficile et contraignant de se garder une place au paradis alors que tout écart de conduite mène vers les flammes de l’enfer qui emprisonnent la vie du personnage. En représentant cette même histoire sur un grand cercle de la sphère, il est possible de balancer cette lecture puisque les deux aires associées au paradis et à l’enfer seront équivalents.

La construction d’histoires sur la sphère génère des structures difficilement représentables sur le plan. Par exemple, prenons un cube, doublons chacune de ses arêtes et déformons le tout pour obtenir une sphère. (Figure 10) Nous obtenons sur la sphère un graphe équivalent à six cercles opposés en paires comme le sont les faces du cube. Cette construction permet d’opposer les cycles antipodaux d’une manière qui serait impossible sur le plan. La construction d’histoire sur les sculptures narratives s’avère donc un outil qui peut apporter des informations supplémentaires à la narration.

Figure 11

Figure 10: La sphère et le cube sont topologiquement équivalents. Source : http://wiki.blender.org/index.php/File:Dev-cube_sphere.png

Tout comme dans le cas du plan, nous pouvons envisager le recouvrement de la sphère par des cases, tout comme dans la présentation de McCloud, ou par des histoires cycliques. L’analyse des recouvrements de la sphère devient rapidement plus complexe que celle de l’analyse du plan, mais puisque ces recouvrements doivent se faire à l’aide d’un nombre fini de figures isométriques, cela en facilite l’étude (Gao, Shi et Yan, p.2). Sans résumer l’ensemble des résultats et des différentes classifications existantes, nous soulignons quelques particularités. En premier lieu, la géométrie sur la sphère est un exemple de géométrie non euclidienne. Cela implique que la somme des angles d’un triangle n’est pas obligatoirement de 180 degrés, en fait cette somme est supérieure à 180 degrés (Bonola, p.136). Cette caractéristique nous permet de construire des dallages réguliers de la sphère qui seraient impossibles sur le plan, soit parce que les figures ne peuvent pas y exister, soit par ce que ces figures ne permettent pas un dallage du plan. Imaginons un dallage de la sphère à l’aide de triangles isocèles possédant deux angles droits. Évidemment, de tels triangles s’avèrent impossibles sur le plan. Sur la sphère il est possible de retrouver ces triangles si nous prenons un sommet comme étant le Pôle Nord et les deux autres points sur l’équateur, cela résulte de la compactification du plan à l’aide du point à l’infini. Si nous appliquons le même principe à partir du Pôle sud, nous trouvons que le résultat sur le plan après la projection stéréographique est un triangle du point de vue topologique, mais pas du point de vue géométrique puisque l’un de ses côtés est un arc de cercle. Dans les deux cas, le triangle sur la sphère est isocèle puisque la distance sur la sphère de l’équateur aux Pôles est constante et il est rectangle puisque le croisement des méridiens et de l’équateur est perpendiculaire. Nous construisons le dallage en deux temps. Premièrement par juxtaposition de ce triangle dans un hémisphère jusqu’à ce que celui-ci soit couvert et ensuite nous procédons de même pour le second hemisphere (47). (Figure 11)

Figure 12

Figure 11 : Pavage de la sphère. Source : http://math.youngzones.org/Non-Egeometry/spherical2.html

La géométrie non euclidienne de la sphère permet donc des pavages réguliers impossibles sur le plan. Des pentagones réguliers peuvent daller la sphère, il suffit de regarder de dodécaèdre pour s’en convaincre. (Figure 12) La construction d’un tel dallage sur le plan demeure infaisable. Nous avons vu également qu’il est possible de recouvrir le plan à partir d’histoires en spirales. Si une seule spirale suffit pour le plan, il en est de même pour la sphère. À la différence du plan, nous pouvons recouvrir la sphère à l’aide d’un nombre arbitraire de spirales disjointes : nous pouvons tracer un nombre quelconque de loxodromies parallèles qui s’enroulent aux deux pôles sans jamais se croiser.

Figure 13

Figure 12: Pavage d ela sphère par des pentagones. Source : http://plus.maths.org/content/trouble-fiv

Le théorème de Kuratowski tient aussi pour la sphère, c’est-à-dire qu’un graphe sera planaire sur la sphère si et seulement s’il ne contient pas les graphes complets bipartis sur trois sommets ou le graphe complet sur cinq sommets, K₃,₃ et K₅. Tout graphe planaire sur le plan l’est aussi sur la sphère et vice versa (Bondy, p.247). L’avantage de l’utilisation de la sphère peut encore être celui de l’utilisation de l’espace tridimensionnel.

Considérons la sphère dans une perspective topologique. Du point de vue de cette théorie, la forme exacte des objets n’importe pas et si une forme peut être obtenue à partir d’une autre par le biais d’étirements, écrasements et torsions, nous disons que ces figures sont homéomorphes. Les opérations proscrites sur ces objets sont les coupures, collages et perçages. Par conséquent, une sphère est homéomorphe à une infinité de figures tels le cube, l’ellipsoïde et même comme souligné à la blague par certains, à un lapin (48). En fait, toute surface bornée sans trou sera homéomorphe à la sphère. La topologie traite des invariants topologiques, c’est-à-dire des caractéristiques partagées par tous les objets homéomorphes entre eux (Barr, p.5). La caractéristique d’Euler est l’un de ces invariants topologiques qui relie entre eux le nombre de faces, de sommets et d’arêtes et d’un graphe planaire sur une surface. Initialement, cette relation entre les faces, les arêtes et les sommets d’un graphe fut décrite seulement pour décrire les polyèdres (Barr, p.10), mais il se trouve que cette formule s’applique à tout graphe planaire connecté (Bondy, p.259). Antoine-Jean Lhuilier en généralisa la forme pour en donner une version qui s’applique à toute surface bornée (Pickover, p.67). L’utilité d’une telle relation est de permettre de vérifier si un graphe est planaire puisqu’un graphe qui ne respecte pas cette caractéristique ne peut être planaire. Nous pouvons de cette manière démontrer que le graphe biparti complet sur deux ensembles de trois sommets ne peut être planaire (Bondy, p.260). Trivialement, nous constatons que tout graphe planaire sur la sphère l’est également sur toute surface homéomorphe à celle-ci.

Figure 14

Figure 13: Page couverture de The Portable Frank par Jim Woodring. © 2008 Jim Woodring

Les exemples de bande dessinée produite sur des surfaces homéomorphes à la sphère semblent pratiquement inexistants. Le seul exemple qui s’en rapproche apparaît, quelque peu comme la sphère de McCloud, en pavage d’un dragon par des cases de bandes dessinées par Jim Woodring sur la couverture de son ouvrage The Portable Frank (2008). (Figure 13) La créature en question n’apparaît pas dans l’ouvrage en soi. Elle n’est pas sans remémorer la gravure The Remonstrant Snake présentée par Kunzle qui présente sur un grand serpent les conspirateurs de la fraternité remonstrante (Kunzle, p.58-60). (Figure 14)

Figure 15

Figure 14: The Remonstrant Snake.  Tiré de l’ouvrage de KunzleFigure 14: The Remonstrant Snake.  Tiré de l’ouvrage de Kunzle

Une autre surface populaire qui commence à attirer l’attention des artistes est le ruban de Möbius. Le ruban existe depuis l’Antiquité ; le philosophe Lao Tseu l’avait déjà décrit pour en faire une représentation de l’infini (Cazenave, p.731). Le ruban est généralement nommé d’après le mathématicien allemand August Ferdinand Möbius qui l’étudia au 19e siècle. Un autre mathématicien du nom de Johann Benedict Listing en fit la découverte 1958, mais il approfondit moins ses recherches que Möbius ce qui explique son appellation (Pickover, p.28). Nous pouvons construire le ruban de Möbius à partir d’un simple rectangle. Il suffit de tourner l’une de ses extrémités de 180 degrés et de le coller à l’autre extrémité du rectangle (Barr, p.23-25). (Figure 15)

Figure 16

Figure 15 : Le ruban de Moebius. Source : http://www.math.cornell.edu/~mec/Winter2009/Victor/part2.htm

La surface résultante est bornée et ne possède qu’un seul côté. Effectivement, en traçant une ligne le long du rectangle nous passons sur le devant et l’arrière de la bande. Pour cette raison nous disons que cette surface est non-orientable (Pressley, p.76-77) et nous verrons plus loin qu’il existe en faire une infinité de surface de la sorte. En suivant la bordure du rectangle nous trouvons également que cette surface ne possède qu’une arrête, cette arrête consiste en le cadre de cette surface, cadre qui la rend bornée (Barr, p.24). Il possède une caractéristique d’Euler de zéro.

Figure 17

Figure 16: M.C. Escher, Ruban de Moebius II, 1963, xylogrphie, 45×20 cm

Le ruban de Möbius est probablement l’une des figures mathématiques les plus connues et son utilisation passe de la prestidigitation à la physique (Gardner 1956, p.70-71). Dans son livre The Möbius Strip, Clifford Pickover démontre l’ampleur de cette popularité autant en ingénierie, qu’en physique et dans les arts (2006, p.xvii-xix). Parmi les nombreux artistes qui se sont intéressés à cette surface, le nom d’Escher apparaît encore. Plusieurs de ses gravures représentent d’une manière ou d’une autre un ruban de Möbius ou un espace inspiré par celui-ci (Locher, p.212, 248 et 260) (Figure 16). Le ruban a aussi motivé la construction de nombreuses sculptures par Max Bill, Keizo Ushio, Bruce White, Enrique Carbajal G. Sebastián, et plusieurs autres (Friedman 2007) (Luecking 2007) (Carbajal 1975) (Figure 17). Si l’utilisation première de Lao Tseu en était pour représenter l’éternité, ce mandat s’est depuis élargi ; «It has become a metaphor for change, strangeness, looping, and rejunevation» (Pickover, p.xviii).

Figure 18

Figure 17: Ruban de Moebius par Max Bill

Son utilisation dans la construction d’histoires apparaît également en littérature et plusieurs structures d’histoires cycliques sont considérées comme étant des rubans de Möbius. Pickover présente une panoplie d’œuvres littéraires reliées au ruban de Möbius (Pickover, p.179-187). Certaines, comme No Sided Professor de Martin Gardner ou The Wall of Darkness d’Arthur C. Clark, font apparaître le ruban comme objets dans la diégèse (Pickover, p.174-175). D’autres, telles It’s a Wonderfull Life de Frank Capra ou À la recherche du temps perdu de Marcel Proust, présentent des boucles qui motivent l’auteur à les comparer au fameux ruban. Il en va de même pour le film Donnie Darko de Richard Kelly (Pickover, p.179-181). Nous devons préciser que rien n’indique que nous devons analyser ces histoires réellement comme des structures apparentées à des rubans de Möbius. Effectivement, ces histoires sont en fait strictement des histoires circulaires planaires, peu importe la surface sur laquelle nous les considérons. Ces histoires pourraient être également considérées comme étant inscrites sur des cylindres. Finalement, nous pouvons imaginer ces histoires comme étant écrites sur un ruban de Möbius, mais aucune des particularités qui distinguent le ruban de Möbius d’un simple segment de cylindre ne sont mises à profit. Pickckover discute également l’une de ses propres histoires dont il présente le schéma sur un ruban de Möbius (Pickover, p.183).

Figure 19

Figure 18: Killoffer, Morlaque. OuBaPo. Oupus 3. Paris : L’Association, 2000. © Killorffer

Les stratégies propres à la surface du ruban de Möbius apparaissent réellement avec leur utilisation de certains auteurs de bandes dessinées. Afin de bien comprendre ces différentes utilisations, nous allons distinguer deux cas particuliers. Premièrement, le ruban de Möbius peut apparaître comme objet tridimensionnel dans la diégèse. La construction de Killoffer dans le troisième ouvroir de l’OuBaPo s’apparente aux histoires décrites par Pickover puisqu’elle ne sert qu’à présenter les cogitations philosophiques cycliques d’un personnage (OuBaPo 2000, p.6). (Figure 18) Or, l’idée de Killoffer peut être légèrement agrémentée afin d’obtenir un usage propre au ruban de Möbius. Alan Moore en fait une telle utilisation dans le tome trois de sa série Promethea. (Figure 19) Comme le mentionne Di Liddo, Promethea est «a self-reflexive deliberation about the power of narration » (2009, p.87) et l’utilisation du ruban participe clairement dans cette optique. En discutant de l’infini, les personnages de Sophie et Barbara se retrouvent à marcher sur un ruban de Möbius (Di Liddo, p.93). Dans cette construction les différents moments de l’action sont à la fois synchrones et distincts, c’est-à-dire qu’ils ont lieu à la fois au même moment et à des moments séparés. Par exemple, en lisant la planche du point supérieur gauche et en suivant les personnages, le second moment souligne la synchronicité : Sophie mentionne qu’elle entend des bruits sous ses pieds, ce bruit vient en fait du même personnage marchant plus tard et plus loin sur le ruban. De même, à deux reprises les personnages s’aperçoivent au loin sur le ruban à un moment qui est donc à la fois postérieur et synchrone. La synchronicité des éléments de la scène n’est en rien une particularité du ruban, nous pourrions très bien imaginer des personnages qui marchent autour d’un cylindre dans plusieurs moments à la fois distincts et synchrones. Ce qui semble justifier l’utilisation du ruban est la présence d’un cycle de pair avec des moments synchronisés de part et d’autre du ruban, comme il en est le cas lorsque la protagoniste entend ses propres sons sous le ruban. La non-orientabilité du ruban est ici mise au service de la narration. Nous devons noter qu’encore une fois, cette construction pourrait être possible à l’aide d’une sphère ou d’un cylindre.

Figure 20

Figure 19: Alan Moore, J.H. Williams III et Mick Gray. Promethea. © America’s Best Comics

L’utilisation du ruban est alors principalement symbolique. Le tome Le début de la fin de la série des Julius Corentin présente aussi un ruban de Möbius dans sa diégèse (Mathieu 1995, p.11). Cette présence tente d’outrepasser la simple présence physique pour référer également à la structure globale du tome qui possède cette double orientation ; le milieu du livre est le lieu de rencontre de deux sens de lecture qui se lise à un demi-tour de différence. Cette mise en opposition, souligné de surcroît par la dichotomie du noir et blanc qui se complètent dans les deux segments d’histoire, est une référence à une autre utilisation du ruban de Möbius qui apparaît à mi-chemin entre les deux prochains types que nous discutons.

Figure 21

Figure 20: Möbius Comic Strip de Mark Heat. Source: http://www.CartoonStock.com ©Mark Heat

Figure 22

Figure 21: Tom Tomorrow, The Modern World : Moebius Strip Foreign Policy. © 2003 Tom Tomorrow

Le second type d’utilisation apparaît lorsque le ruban de Möbius est extra-diégétique, mais confiné à l’intérieur de la bande dessinée où il apparaît comme support de l’histoire. Comme dans le cas des différentes histoires analysées par Pickover, certaines ne font pas un usage spécifique de ruban de Möbius et auraient pu simplement être représentées sur le plan ou le cylindre. Le support en ruban de Möbius ne fait qu’ajouter un élément esthétique à l’histoire. C’est le cas pour les histoires Möbius Comic Strip de Mark Heat (49), The Modern World : Moebius Strip Foreign Policy de Tom Tomorrow (50) et celui de Brian MacLachlan (51). (Figures 20-21)Dans le premier cas, l’histoire n’est pas circulaire et se termine à la troisième case. Étrangement, cette troisième case apparaît du mauvais côté de la bande, comme si l’histoire sautait soudainement d’un côté à l’autre du ruban. De plus, la bande n’apparaît pas clairement comme celui de Möbius; le titre seulement indique cette propriété. L’histoire de Tom Tomorrow utilise clairement la visualisation d’un ruban de Möbius, mais encore une fois l’histoire semble sauter de côté et  de l’autre du ruban sans explication. Le ruban présente la logique circulaire du président George Bush à propos de sa politique d’invasion de l’Iraq. Cette fois l’histoire est cyclique, mais ne fait pas usage des caractéristiques propres au ruban de Möbius. Encore une fois, l’histoire saute de côté à l’autre du ruban sans explications et nous pouvons en déduire que certaines sections du ruban restent blanches. Finalement, MacLachlan fait également basculer l’histoire de part et d’autre du ruban. (Figure 22)

Figure 23

Figure 22: Ruban de Moebius par MacLachlan. Source : http://www.brianmcl.com/moebius-comic-strip/. © Brian MacLachlan

Dans les deux derniers cas, les auteurs omettent également un élément en plus de ne pas utiliser la non-orientabilité. Lors de la construction du ruban, lorsque nous tournons une extrémité de 180 degrés nous obtenons que les scènes de chaque côté du ruban sont verticalement inversées. Cela rend la lecture confuse lorsque l’histoire bascule d’un côté à l’autre. Ces auteurs ne semblent pas considérer ce fait.

Figure 23a

Figure 23: Instructions pour le magazine Nick Mag. Source : http://nickmag-comics.livejournal.com/16577.html

Le magazine Nick Mag a dédié un numéro seulement aux bandes dessinées construites sur des rubans de Mobius (52). (Figure 23)Cette fois les histoires sont réellement adaptées à la forme du ruban. Les histoires restent malgré tout de simples histoires cycliques dessinées sur un ruban de Möbius sans faire un usage particulier des caractéristiques propres au ruban Möbius. Il en est de même pour l’histoire de Lécroart offerte à en vœu en 2008 à L’Association (Groupe Acme, p.96-97). (Figure 24)

Figure 24

Figure 24: Lécroart, Ruban de Moebius , Dans Groupe Acme. 2011. L’Association: Une utopie éditoriale et esthétique. Paris : Les Édtions Nouvelles.

Certains auteurs ont fait un usage du ruban de Möbius réellement en lien avec sa non orientabilité. Analysons en premier lieu un exemple apparu dans xzcd nommée Möbius battle. Cette fois, afin d’éviter le retournement des scènes de haut en bas, l’auteur présente les cases dont la lecture se fait perpendiculairement à la bordure. Il utilise la non-orientabilité du ruban en présentant l’histoire sur une surface transparente de sorte que les mêmes scènes sont lues à deux reprises, mais inversées comme dans un miroir (53). (Figure 25)La bande dessinée proposée par Jim Woodring est tout aussi ingénieuse. Dans son histoire, un personnage traverse littéralement le ruban pour se retrouver de l’autre côté, mais par la propriété d’être non orienté il demeure tout de même dans la même histoire et il ne fait que rentrer une fois de plus dans la boucle (54). (Figure 26)

Figure 25

Figure 25: Möbius battle par Randall Munroe. Source: http://xkcd.com/381/

Figure 26

Figure 26: Ruban de Moebius par Jim Woodring. Source: http://www.fantagraphics.com/index.php?option=com_content&task=view&id=4811&Itemid=109

En considérant les histoires sous leur forme de graphe planaire, le ruban de Möbius offre de nouvelles options. Par exemple, nous pouvons tracer le graphe complet biparti sur deux groupes de trois points K₃,₃ ou le graphe K₅ sur le ruban de Möbius de manière planaire (Pickover, p.94). (Figure 27 et 28) Il serait donc possible de construire des histoires planaire sur ce graphe si ce graphe est présenté sur le ruban de Möbius.

Figure 27

 

Figure 27 : Représentation planaire du graphe complet sur cinq sommets sur le ruban de Moebius. Source : http://demonstrations.wolfram.com/EmbeddingsOfGraphsInATorusAndInAMoebiusStrip/

Figure 28

Figure 28: Représentations planaires de K3,3 et K5. Dans  Gross, J.L. and T.W. Tucker.  [1987] 2012. Topological graph theory, p.30. New York: Dover Publications, Inc. © 1987, 2001 par Jonathan Gross et Thomas W. Tucker

Une famille de graphes qu’il est possible de présenter de manière planaire sur le ruban de Möbius sont les échelles de Möbius. Ces graphes sont en fait formés d’un cycle possédant un nombre pair de sommets qui sont reliés par une arête aux sommets exactement opposés à eux. (Figure 29) Si le nombre de sommets est de huit, il porte le nom particulier de graphe de Wagner. Ces graphes sont facilement représentables sur un ruban de Möbius par une simple échelle qui suit le contour du ruban. (Figure 30)

Figure 29

 

Figure 29: Les échelles de Moebius, Source : Mathworld.com

Figure 30

Figure 30: Représentation d’une échelle de Moebius en ruban de Moebius. Source : Wikipedia

En fait, nous pouvons les représenter sur le plan à l’aide d’une seule intersection non planaire (Guy et Harary, p.494-495). L’avantage d’une telle construction est de jumeler deux à deux des éléments d’un cycle. De ce fait nous pouvons construire l’histoire suivante : à chaque moment d’une histoire, un personnage s’imagine comment se rendre dans une situation idéale dans laquelle il se retrouve lui-même plus tard dans l’histoire. Il existe un équivalent au théorème de Kuratowski pour le ruban de Möbius. En 1980, Dan Archdecon identifia les 35 graphes d’obstruction pour le critère de planarité (Gagarin, Myrvold et Chambers, p.152), autrement dit les graphes qui, si présents en tant que mineurs, rendent la planarité impossible (Delahaye avril 2008, p.97).

figure 31

Figure 31: Coloriage et construction du tore. Source : Wikipedia

Une autre surface sur laquelle il est intéressant de présenter une histoire est le tore. Nous pouvons construire le tore en rejoignant les deux paires de côtés d’un rectangle (Figure 31). Encore une fois, certains graphes qui ne sont pas planaires sur le plan le sont sur le tore. (Figure 32-34)

Figure 32

Figure 32 : K3,3 sur le tore.  Dans Pickover, Clifford. 2006. The Möbius Strip : Dr. August Möbius’s Marvelous Band in Mathematics, Games, Litterature, Art, Technology, and Cosmology. New York: Thunder’s Mouth. © 2006 Clifford A. Pickover

Figure 33

Figure 33: K5 et K6  sur le tore. Dans Gross, J.L. and T.W. Tucker.  [1987] 2012. Topological graph theory. New York: Dover Publications, Inc. © 1987, 2001 par Jonathan Gross et Thomas W. Tucker

Figure 34

Figure 34: Le graphe K5 sur le tore Source : http://www.learner.org/courses/mathilluminated/units/4/textbook/05.php

Du point de vue topologique, le tore se distingue de la sphère par la présence d’un trou. Cela implique qu’une boucle ne peut pas obligatoirement être comprimée en un seul point. De plus, le théorème de Jordan ne tient plus pour cette surface. En effet, comme le démontre la figure 35, un cercle qui contient le trou du tore en son centre ne sépare pas la surface en deux espaces, il en de même pour un cercle perpendiculaire à l’axe de rotation du tore (Barr, p.17). D’autres assemblages de courbes sont également intéressant. (Figure 35) L’ensemble d’obstruction du tore lui contient au moins 16 629 mineurs (Gagarin, Myrvold et Chambers, p.152).

Figure 35

Figure 36

Figure 35: Le théorème de Jordan sur le tore. Source : http://ferrebeekeeper.wordpress.com/2011/03/09/the-torus/

Par les principes d’étirements propres à la topologie, un tore est équivalent à une sphère avec une poignée. Or, il est possible d’ajouter un nombre arbitraire de poignées et nous obtenons des surfaces équivalentes à des tores avec le même nombre de trous. Cette méthode d’ajout de poignées à la sphère permet de construire l’infinité des surfaces compactes orientables et chacune de ces surfaces possède une caractéristique d’Euler différente. Il en résulte que chacune de ces surfaces permet un ensemble de graphes planaires différents. Inversement, il est possible à partir de n’importe quel graphe de trouver une surface sur lequel il est possible de le superposer de manière planaire en débutant par représenter ce graphe sur la sphère et en ajoutant une poignée à chaque fois qu’un croisement est inévitable (Gross et Tucker, p.25)(Figure 36). Évidemment, il est possible d’effectuer des dallages de chacune de ces surfaces puisqu’il est possible de faire une triangulation de toute surface (Francis et Weeks, p. 394).

Figure 36a

 

Figure 36: Technique pour éviter les croisements. Dans Gross, J.L. and T.W. Tucker.  [1987] 2012. Topological graph theory. New York: Dover Publications, Inc. © 1987, 2001 par Jonathan Gross et Thomas W. Tucker

Figure 37

Figure 37: Polygone fondamental de la bouteille de Klein. Source : Wikipedia

Il existe toutefois une seconde classe infinie de surfaces bornées, celle des surfaces non orientables comme la bouteille de Klein. Nous pouvons obtenir cette surface à partir du polygone fondamental de la figure 37 en rejoignant les paires de côtés opposés selon l’orientation donnée. Nous ne pouvons pas représenter cette surface en trois dimensions sans éviter un croisement qui n’est pas réellement une intersection de la surface avec elle-même. (Figure 38)

Figure 38

Figure 38: Bouteille de Klein en trois dimensions. Source : http://plus.maths.org/content/imaging-maths-inside-klein-bottle

Il existe une infinité de surfaces non orientables que nous pouvons obtenir à partir de la sphère et du ruban de Möbius. Nous avons préalablement mentionné que la bordure du ruban de Moebius est en fait un cercle, pour obtenir la bouteille de Klein nous pouvons y faire un trou circulaire et y coller la bordure circulaire du ruban de Möbius. Nous pouvons obtenir l’infinité des surfaces non orientables en collant un nombre arbitraire de rubans de Möbius sur la sphere (56). (Gross et Tucker, p.120). (Figure 39)

Figure 39

Figure 39: L’ajout d’un ruban de Moebius sur une surface. Dans: Pickover, Clifford. 2006. The Möbius Strip: Dr. August Möbius’s Marvelous Band in Mathematics, Games, Litterature, Art, Technology, and Cosmology. New York: Thunder’s Mouth. © 2006 Clifford A. Pickover

L’avantage des polygones fondamentaux est donc premièrement de pouvoir représenter de manière planaire n’importe quelle surface, aussi complexe soit-elle. Nous pouvons alors reconstruire n’importe quelle histoire à partir d’une sculpture narrative. L’avantage de travailler sur des surfaces non orientables est en fait d’étendre la notion de fiction non plus seulement au contenu de l’histoire, mais également à sa forme. Si de plus nous prenons en compte les espaces intérieurs et extérieurs aux cycles de sorte à la combiner de par la non-orientabilité -comme les deux ‘’côtés’’ du ruban de Möbius sont reliés par la même opposition- certaines histoires ne sont représentables que sur des surfaces qui ne peuvent exister en trois dimensions.

Figure 40

Figure 40: Noeud Trefoil  par Jos Leys (2004). Source : http://www.learner.org/courses/mathilluminated/units/4/textbook/05.php

Tout comme la forme d’une courbe peut influencer sa lecture, la forme de la surface sur laquelle un graphe et son histoire sont représentés peut être lourde de sens. Par exemple, le tore peut simplement prendre la forme d’un beigne ou bien il peut s’imbriquer en trois dimensions pour former le nœud gordien de la surface de la figure 40. Une vaste littérature sur l’effet des formes existe, principalement dans l’histoire et l’analyse de la sculpture. Une autre branche des mathématiques se dédie à la classification de ces surfaces : la théorie des nœuds.

Figure 41

 

Figure 41: Surface de Costa. Source : Wikipédia

Figure 42

Figure 42: Surface de Scherk. Source : Wikipedia

La liste des surfaces non compactes est également infinie. Nous pouvons également utiliser ces surfaces comme canevas infini dans la construction de sculptures narratives. Certaines permettent des espaces vacants, comme la surface de Costa (57) (Figure 41), d’autres offrent différentes portions de plans dans diverses directions comme la surface de Scherk (58) (Figure 42) et finalement des surfaces peuvent, à la manière de la bouteille de Klein, se croiser elles-mêmes lorsque représentée en trois dimensions. C’est le cas pour les surfaces de Henneberg et d’Enneper (Pressley, p.227 et 214). (Figure 43) Ces surfaces mènent vers de nouveaux défis narratologiques.

Figure 43

Figure 43 : Surface de Henneberg par Dizingof.  Source : http://www.ponoko.com/design-your-own/products/henneberg-math-art-by-dizingof-8507

Comme le mentionne Paul Gravett dans Comics Art, en discutant le canevas infini dans sa forme initiale telle que proposée par McCloud; les dimensions de la bande dessinée « could mutate beyond them into stranger, unpredictable configurations, akin to networks, subway systems, flow-charts, maps, atomic structures puzzles or mazes, traversables along multiple trails » (Gravett, p.130) L’utilisation élargie du concept de canevas infini permet de travailler sur une infinité de surfaces ayant toutes des caractéristiques différentes. Encore une fois selon Gravett: « it will always be human imagination that is the inexhaustible, the infinite canvas » (Gravett, p.136). Nous avons vu comment l’utilisation de cycles diffère déjà beaucoup entre le plan, la sphère et le tore. La notion de sculpture narrative permet d’inclure autant les caractéristiques propres à l’histoire, l’arthrologie qu’implique naturellement le médium de la bande dessinée, les affects de la sculpture par l’utilisation de l’espace ainsi que les notions mathématiques principalement issues de la géométrie, de la théorie des graphes et de la topologie. Nous pouvons parfois représenter la surface sur laquelle s’écrit théoriquement l’histoire par une seconde surface ; par exemple, nous avons vu qu’il est possible de représenter de manière planaire la bouteille de Klein même si celle-ci ne prend sa forme réelle qu’en quatre dimensions. Le canevas infini peut par conséquent être infini de trois manières différentes : par la densité du plan qui permet des zooms infinis, par l’utilisation d’une surface non compacte qui permet une expansion infinie et par le nombre infini de dimensions dans laquelle nous pouvons l’imaginer. L’utilisation des sculptures narratives permet d’explorer différentes narrations sous la lumière de ces diverses composantes. Dans ce chapitre, nous avons exploré un petit nombre de surfaces ainsi que quelques propriétés des graphes qui sont en lien avec la surface sur laquelle ils se trouvent afin de démontrer la pertinence de cette approche.

Conclusion:

Dans ce mémoire, nous avons étudié les structures temporelles des narrations en les considérant comme sculptures narratives. Pour ce faire, nous avons limité notre recherche à l’analyse du temps de l’histoire tel que défini par Genette et nous avons modélisé des histoires en les considérant comme agencements de courbes paramétrées en graphes. Nous avons ensuite étudié comment la complexité de certaines constructions mène vers l’étude de la surface sur laquelle cette histoire est représentée. Par le fait même, l’étude des surfaces devient naturellement un outil servant la construction de telles structures. Nous avons nommées sculptures narratives la représentation d’histoires en suites d’images sur une surface. Le cas trivial étant le plan, nous avons étudié comment d’autres surfaces permettent de régler le problème de la planarité ou servir à des fins esthétiques.

Nous devons alors nous questionner en quoi les résultats de ce mémoire pourront soit mener vers de nouvelles recherches sur l’objet même, soit mener vers une nouvelle approche narratologique. En ce qui concerne les différentes recherches qui pourraient complémenter ce mémoire, plusieurs avenues sont possibles. Nous pourrions approfondir cette étude en construisant un plus grand nombre d’histoires et en incluant un plus grand nombre de théorèmes et définitions issues de la géométrie, de la théorie des graphes, de l’algèbre, de la géométrie différentielle, de la topologie et de la théorie des noeuds. Cet ajout servirait principalement à l’ajout de contraintes éventuelles dans la construction de sculptures narratives. Des considérations sur la réception de ces formes préalablement à la réception de l’histoire pourraient servir cette étude et guider le choix des formes.

Une deuxième avenue importante serait l’inclusion dans ce modèle du temps du récit. Par exemple, un temps d’histoire cyclique peut être représenté cycliquement dans le désordre afin de complexifier la lecture de ces histoires et favoriser la création d’intrigues. Une telle approche compliquerait considérablement notre modèle, mais ouvrirait la voie vers de multiples expérimentations. En effet, déjà la simple permutation de segments du temps de l’histoire peut alors être perçue comme la permutation de segments de surfaces. Nous pourrions par exemple construire un récit sur un cube Rubik dont il faudrait retrouver la forme initiale du temps de l’histoire.

Finalement, des études en cognition pourraient tenter d’évaluer l’influence de la lecture d’histoires complexes sur l’apprentissage des réseaux de concepts. Comme mentionné au premier chapitre, les vecteurs des schémas de Ryan sont des vecteurs d’incidences qui s’apparentent à des structures d’incidences logiques, c’est-à-dire que des évènements A,B,C peuvent mener vers des ‘’conclusions’’ D,E,F. L’apprentissage de réseaux d’incidences de concepts et théorèmes pourrait donc être facilité par la mise en contact avec de telles structures dès un bas âge. Il resterait à mesurer la valeur réelle d’une telle hypothèse.

Une autre conséquence éventuelle est celle d’un appel à la collaboration entre diverses disciplines dans l’élaboration et la construction des sculptures narratives. La collaboration entre les mathématiques et les arts visuels existe déjà dans la pratique, surtout depuis l’arrivée de l’ordinateur, mais cette collaboration reste encore discrète dans l’étude théorique de l’art visuel. Quoique plusieurs ouvrages relativement récents existent sur les relations entre les mathématiques et les arts, principalement au niveau des formes, ces ouvrages prennent habituellement la forme de collections d’articles. Les nombreux livres publiés sous la direction de Michèle Emmer ou de Claude Bruter en sont de parfaits exemples. Le

Notes: 

43-Celle d’un espace de Hausdorff avec une base dénombrable de sorte que le voisinage de tout point soit homéomorphe à un sous ensemble du plan cartésien.

44-Pour plus d’informations, nous recommandons le site suivant: http://www.map.mpim-bonn.mpg.de/2-manifolds

45-Pour une lecture plus complète sur le sujet : http://www.math.cornell.edu/~mec/Winter2009/Victor/part4.htm

46-http://stumptowntradereview.com/2012/04/the-5-largest-comics-in-the-world/

47-Une série de dallages de la sphère peut être consultée sur le site http://cs.stmarys.ca/~dawson/images4.html

48-http://pyramidbeach.com/tag/homeomorphic/ et http://emdinger195.blogspot.ca/2009/06/poincare-conjecture.html

49-Il est possible de trouver cette histoire à l’adresse suivante : http://www.neatoshop.com/product/Mobius-Comic-Strip

50-http://www.shroomery.org/forums/showflat.php/Number/1881574

51-http://www.brianmcl.com/moebius-comic-strip/

52-http://nickmag-comics.livejournal.com/16577.htm

53-https://xkcd.com/381/

54-https://www.fantagraphics.com/rarities-and-miscellany-by-various-artists/moebius-strip-comic-by-jim-woodring-video-photo-animation.html

55-Il existe en fait plusieurs manières de définir les ensembles d’obstruction qui impliquent des nombres différents d’obstructions, par exemple les obstructions topologiques et les obstructions de graphes mineurs. Les résultats donnés ici concernent les obstructions de graphes mineurs. Le site de Dan Archdeacon présente ces ensembles d’obstructions. (http://www.emba.uvm.edu/~darchdea/graphs/)

56-Pour plus de détails sur la preuve de cette classification voir aussi l’article : Francis, George K. and Jeffrey R. Weeks. «Conway’s ZIP Proof». American Mathematical Society, 106 (1999), p. 393-399.

57-http://mathworld.wolfram.com/CostaMinimalSurface.html

58-Pour une description formelle de cette surface : http://mathworld.wolfram.com/ScherksMinimalSurfaces.html

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s