Les fondements de l’écriture procédurale : images, espaces et algorithmie musicale de l’algèbre aux fractals. (Chapitre 2.5-2.6)

2.5 Les canons rythmiques et l’algèbre

Sans tomber dans les détails minutieux, nous allons à ce point introduire un peu plus d’algèbre afin d’en comprendre les liens avec les canons rythmiques. Pour cela, nous devons définir ce qu’est un groupe. Un groupe est simplement un ensemble muni d’une opération définie entre les éléments de cet ensemble de sorte qu’il existe un élément neutre, un élément inverse et que cette opération soit associative. Pour donner un exemple concret, les nombres entiers munis de l’opération d’addition forment un groupe. L’élément neutre est 0 puisque N + 0 = 0 + N = N, donc cet élément additionné à gauche ou à droite d’un nombre entier ne change pas ce nombre. L’élément inverse de tout nombre entier est son inverse puisque N + (-N) = (-N) + N = 0, c’est-à-dire que l’élément –N additionné à gauche ou à droite de N donne l’élément neutre. Finalement, l’opération est associative puisque (L + M) + N = L + (M + N).  Pour en revenir aux groupes de frise. La première ligne de la figure 10 reste intacte si nous translatons de N figures vers la droite, de refaire une translation vers la gauche, -N, revient à avoir laissé la frise intacte, donc à l’élément neutre 0. L’associativité découle naturellement du même principe.

Un autre groupe qui nous importe ici est ce même groupe des entiers de pair avec l’addition, le groupe (Z,+),  peut-être quotienté pour obtenir le groupe cyclique Z /12Z. Ce groupe est en fait l’addition modulo n (Dummit et Foote, p. 8-9), ce qui veut dire que lorsque l’on obtient une somme de 12, on revient à 0. Par exemple, 10 + 2 = 0 (mod 12) et 9 +6 = 3 (mod 12).

Ce groupe est important puisqu’il apparaît dans l’analyse harmonique de plusieurs compositeurs (Andreatta et Agon, p. 70), dont celle d’Anatole Vieru qui travailla proche de Vuza. Pour bien comprendre ce fait, imaginons que ce qui nous intéresse est la note et non pas son octave, il en découle que le onzième demi-ton de la gamme augmenté d’un demi-ton revient à la fondamentale de la gamme. Tout comme pour le groupe Z /12Z, il est possible de représenter cette situation par un diagramme circulaire

 Évidemment, cette représentation peut servir également à la représentation d’un rythme à douze temps. Nous avons déjà rencontré ce type de représentation dans le travail de Demain. Une des questions qui revient encore une fois est l’idée de pavage. Nous voulons recouvrir les douze temps du rythme une seule et unique fois à l’aide de la translation d’un rythme de base. Par exemple, le rythme (101010101010) et son rythme translaté d’un temps vers la droite (010101010101) couvre les douze temps sans intersection, sans que deux notes soient jouées en même temps. Le jeu devient intéressant lorsque nous voulons construire des canons un peu plus complexes, possiblement sur un plus grand nombre de temps.

Les groupes sont importants dans la compréhension de plusieurs structures, notamment celle des pavages, des transformations géométriques et finalement de certaines opérations musicales. Ce travail est accompli à l’aide de la notion d’isomorphisme de groupe qui permet de comparer la structure interne de deux groupes; deux groupes isomorphes fonctionnent de la même manière. Par extension, comprendre les liens qui existent entre différent groupes revient à comprendre les liens entre différentes applications artistiques. Ces isomorphismes définissent des liens fondamentaux entre des opérations et «the result is an articulation of structure». (Rothstein, p. 130)

Pour démontrer le lien avec l’algèbre, nous pouvons décomposer le groupe Z/12Z en la somme directe de deux autres groupes, ce qui veut dire que chaque élément du premier groupe sera additionné à tous les éléments du second groupe. Nous pouvons voir que Z/12Z = Z/4Z Z/3Z, c’est-à-dire que le cycle de 12 est composé de 3 cycles de 4 ou de 4 cycles de 3.

Du point de vue rythmique, cela veut dire que si l’on prend le rythme qui marque chaque 4 temps comme rythme du canon (nommé rythme interne) et que nous les entamons au temps  0,1 et 2 (rythme externe), nous obtenons un pavage rythmique. En effet, nous obtenons les rythmes suivants (100010001000), (010001000100) et (001000100010) qui excluent toute superposition de temps. Évidemment, nous aurions pu faire le choix inverse et prendre Z/3Z comme rythme interne et prendre Z/4Z comme rythme externe.

2.6 Le Monstre de Vuza

Nous voulons à présent présenté un travail particulier, celui du roumain Dan Tudor Vuza. Le but ici n’est pas de simplement répéter une historiographie autour de ces compositions, mais d’exposer l’incroyable profondeur des structures qui se cachent derrière ce travail. En effet, comme nous allons le démontré, la migration des concepts et structures effectue un va et vient entre nombre de domaines d’études et de créations artistiques. Ce chemin est déjà partiellement tracé par les exemples préalablement étudiés concernant les pavages de l’espace et les canons rythmiques. Pour ne nommer que les grandes avenues principales de ce réseaux, on y trouve de l’algèbre, de la théorie des nombres, les pavages du plan, les pavages à n dimensions, les canons rythmiques, les théories modales de Babbitt et d’Anatole Vieru, l’analyse de Fourier. Nous présentons quelques définitions formelles qui permettent de remplir certains espaces vacants dans l’échafaudage des concepts et théorèmes qui sous-tendent ou découlent ces compositions.

Le lecteur intéressé peut compléter cette lecture à partir des textes éclairants de Moreno Andreatta et d’Emmanuel Amiot, tous deux issus d’une tradition différente et soulignant des aspects complémentaires de ce corpus. Ces textes offrent de nombreuses définitions formelles qui viennent appuyer les résultats mentionnés dans cette section. Ce qui suit est davantage une présentation des différentes migrations paradigmatiques, c’est-à-dire des différentes transpositions entre les aspects mathématiques, géométriques, tonals et rythmiques. Puisque l’étude des canons de Vuza est un espace de convergence, nous devons de retracer l’histoire à partir deux points de départs indépendants, soit l’algèbre et la musique.

La naissance de l’algèbre en Europe au moyen âge est en fait issue de pratiques existantes dans le monde arabe, connues sous le nom d’al-jabr, ce qui signifie balancement ou remplissage. Les savants alors de longues phrases représentant le balancement d’objets dont l’un était inconnu et le tout a finalement été traduit en équations. Des équations qui ont alors vu le jour sont celles composées de combinaisons linéaires de différentes puissances d’une même variable. Ces équations sont des polynômes. On s’intéressa alors à trouver les racines[1] pour différents polynômes[2]. Si la résolution des polynômes de degrés deux est connue depuis Al-Khwarizmi avec la fameuse formule quadratique, celle des degrés supérieurs exigea des recherches plus approfondies. L’Italien del Ferro trouva la forme d’une solution générale pour le degré trois en vers 1500, et de cette méthode Ferrari découla la méthode pour le degré 4. (Stillwell 1994, p. 15) La résolution algébrique du degré 5 allait mener à plusieurs complications. Galois montra en fait qu’il n’existe pas de méthode de résolution générale pour les polynômes de degrés 5 et plus.

Les liens entre la théorie des équations et le groupe de symétrie ont été envisagée par Lagrange dans son traité Réflexions sur la résolution algébrique des équations (1771). Il explique entre autre les solutions pour les équations de degré trois et quatre par les groupes de symétrie S₃ et S₄. (Stillwell 1994, p.125-126) Le mathématicien allemand Félix Klein avait quant à lui bien compris l’importance de la théorie des groupes dans l’étude de la géométrie[3]. Une des approches intéressante propose une classification des surfaces via les différents groupes de symétries[4] (Stillwell 2010, p 64). Les cas les plus simples d’étude des symétries d’une surface apparaissent naturellement avec les motifs sur une bande et sur un plan. Si le cas des bandes infinies offre sept possibilités, le plan cartésien lui offre 17 cas possibles. (Francis et Weeks, 1999)

L’études des pavages du plan existe depuis longtemps puisque ceux-ci apparaissent naturellement comme solution esthétique en architecture pour les surfaces planes (murs, planchers et ainsi de suite) Un travail d’exploration de ces 17 groupes de pavages a été fait par l’artiste M. C. Escher qui y dédia une grande partie de son œuvre en plus de comprendre que la géométrie des pavages s’applique également aux géométries non euclidennes, celles pour lesquelles le l’axiome des parallèles n’est pas respecté[5]. Cependant, leur étude nous éloigne des canons de Vuza et nous ne les abordons pas. Les recouvrements de l’espace peuvent tout de même être étudiés dans une autre optique, celle de la généralisation des pavages de l’espace euclidien à n dimensions.

Ce petit détour par la énième dimension est un passage obligé vers les canons de Vuza, détour qui débute en fait débute par la conjecture de Minkowski. Après avoir travaillé sur l’approximation de nombres réels à partir de nombres rationnels (Szabó et Stein, p. 1-22), il fit l’observation suivante : lorsque l’on effectue un dallage régulier du plan avec des carrés isométriques, nous obtenons des lignes ou une colonne de carrés parfaitement alignés. Autrement dit, des carrés partage des côtés communs. Remarquant que cette propriété tient également avec des cubes –que les cubes partagent des faces carrés communes- il conjectura que cela était vrai pour tout pavage réguliers de l’espace avec des cubes de n dimensions. Plus précisément, il conjectura que tout pavage basé sur un treillis de l’espace euclidien à n dimensions contient au moins une paire de cube qui partage une face de dimension n-1. (Stein et Szabó, p. 22)  Dans ce théorème, un treillis est un ensemble ordonné de points dans l’espace. (Figure 13) Un pavage en treillis implique que les carrés sont ordonnés de la sorte, par exemple en posant le coin inférieur gauche du cube sur chaque point. Ce principe se généralise naturellement plus un plus grand nombre de dimensions.

25-95624c34d2

Figure 13: Treillis

Il fallut attendre 45 ans pour que Hajós propose trouve une solution au problème, solution qui tire toute sa force par sa transposition en problème de théorie des groupes. La version du théorème de Hajós stipule que pour toute factorisation d’un groupe fini abélien[6] en le produit direct de sous-ensembles cycliques, au moins un des facteurs est aussi un groupe[7].  Une particularité fort intéressante dans le travail de Hajós est qu’une fois la transposition de la conjecture de Minkowski en problème algébrique, le nombre de facteurs dans la décomposition n’a plus besoin d’être égale au nombre de dimensions de pavage cubique! (Szabó et Stein, p. 28) En 1930, Keller proposa que la condition d’être un treillis pouvait être retirée, mais Lagarias et Shor ont démontré que cette hypothèse est fausse pour les dimensions supérieure à 10[8]. (Szabó et Stein p. 28) La propriété d’être un groupe de Hajós est d’être abélien et factorisable en des ensembles cycliques. Ce sont donc les groupes sur lesquelles le théorème de Hajós est applicable.

Pour en revenir à Z/12Z, nous avons déjà montré que nous pouvions le décomposer en le produit direct de deux groupes cycliques Z/3Z et Z/4Z, c’est donc un groupe de Hajós et le théorème est applicable.  Il est possible de le décomposer en {0,1,5} et {0,3,6,9}. Dans ce cas, le premier ensemble n’est pas cyclique, mais le second l’est. Par le théorème, il en est ainsi pour toutes les décompositions de Z/12Z. Le plus petit groupe à ne pas posséder une telle décomposition est Z/72Z.

Or, voyons désormais quel en est le lien avec la musique. De ce point de vue, nous devons présenter deux apports importants de Dan Tudor Vuza. Le premier est la transposition de la théorie modale d’Anatole Vieru vers la structure rythmique et par ce fait même permettant de migrer les outils du problème du dallage harmonique vers celui du dallage rythmique (Andreatta 2011, p. 42) Le second est ce qu’Andreatta nomme «a milestone in the development of the mathematical theory of tiling canons…» (Andreatta 2011, p. 41). Ce sont les canons réguliers complémentaires de catégorie maximale[9] dit les canons de Vuza. Ces canons permettent un pavage parfait[10] d’un cycle de temps à l’aide de rythmes qui ne possèdent pas de périodicité dans leurs rythmes internes et externes (Andreatta 2014 p. 66). Dans la ligné du travail de générations de rythmes asymétriques à l’aide de l’algorithme de Bjorklund, cette avancée permet au compositeur de se libérer des contraintes de régularités des entrés de voix lors de la composition de canons[11] (Andreatta   2011, p. 44)

Or, il se trouve que les solutions pour trouver les canons de Vuza sont précisément les groupes qui ne sont pas des groupes de Hajós, comme le groupe Z/72Z. Dan Tudor Vuza ne connaissais pas ces résultats issues de la conjecture de Minkowski, ce qui explique que sa démarche fut toute autre[12]. Une solution pour la décomposition du groupe Z/72Z est donnée par A= {0,1,5,6,12,25,29,36,42,28,29,53} et B={0,8,16,18,,26,34}[13]. Ces deux ensembles forment donc les rythmes interne et externe d’un canon de Vuza.

Andreatta

Figure 14: Décomposition de Z/72Z et un canon rythmique associé par Moreno Andreatta. Source:http://recherche.ircam.fr/equipes/repmus/moreno/RapportMoreno.html

Or, si l’algorithme de Vuza pour a pu offrir une liste complète des décompositions possibles pour Z/72Z, tel n’en est pas le cas pour les autres groupes de non-Hajós Ce fait a été découvert par Moreno Andreatta, Emannuel Amiot et Harald Fripertinger[14]. L’œuvre de Vuza ne s’arrête donc pas avec la création de son algorithme comme solution générale au problème de construction des canons réguliers complémentaires de catégorie maximale et ce pour plusieurs raisons.

Premièrement, l’implémentation et l’analyse de l’algorithme de Vuza par Andreatta dans la pratique de nourrir encore davantage la compréhension théorique des canons de Vuza. Comme l’écrit Andreatta:

                «Building computational models of formal constructions may radically change the perspective on     a given music-theorical problem by emphasizing its experimental component. In the case of the construction of tiling canons, having a computer-aided model made evident a series of properties that would have been difficult to perceive by relying purely on the original theoretical model. For instance, one can show computationally that in non-Hajós groups almost all ‘’outer rythms’’ obtained by Vuza’s algorithm have the property of being palindromes, which establish an unexpected connection with Olivier Messien’s original attempt at constructing canons based on non-invertible rhythms.» (Andreatta, 2011, p. 52)

Il apparaît clairement que l’implémentation de l’algorithme de Vuza a permis deux choses : de compléter le catalogue des canons possibles et de découvrir certaines caractéristiques supplémentaires de ces canons. Le travail de Vuza n’est donc pas complet sans sa mise en forme pratique, sans l’application d’une procédure artistiques certes, celles des compositions musicales, mais aussi celle de la constitution même du catalogue de son corpus éventuellement infini.

Deuxièmement, le travail de Dan Tudor Vuza a offert des résultats à propos groupes non-Hajós avant même que ces résultats soient découverts par des mathématiciens. Par exemple, si un groupe non-Hajós d’ordre n admet une factorisation en deux ensembles A et B, il admet aussi la factorisation en les ensembles kA et B pour k copremier avec n. Ce résultat n’a été obtenu qu’ultérieurement par les mathématiciens Tijdeman en 1995 et par Coven et Meyerowitz en 1999. (Andreatta 2011, 51) De plus, nombre de recherches tissent des liens avec d’autres structures mathématiques, par exemples avec les polynômes cyclotomiques[15]. (Amiot 2011, p. 9-12) Finalement, il y aurait possiblement un lien avec un autre objet théorique fort complexe qu’est la conjecture spectrale, ou conjecture de Fuglede. Les canons de Vuza pourraient apparaître comme contre-exemple de la conjecture de Fuglede pour la dimension 1. (Andreatta 2011, p. 55)

Malgré les subtilités macroscopiques de l’écriture de canons de Vuza – le rythme interne d’un canon n’est pas évident lorsqu’étalé sur 72 temps- quelques compositeurs se sont aventurés dans la composition d’œuvres basées sur ces techniques. Nous pouvons citer les œuvres Coïncidendes de Fabien Levy[16], La Descrizione del Diluvio de Mauro Lanza et Empreinte sonore pour la Fondation Beyeler de Georges Bloch, basée sur une composition de Thelonius Monk (Andreatta et Agon, 2009, p. 68). La partition simplifiée de la section en canon de Coïncidendes (fig. 14) permet de voir la solution utilisée par Fabien Lévy. Le rythme interne du canon à six voix est (0, 11, 17, 20, 23, 24, 44, 47, 48, 53, 59, 68) et le rythme externes est (0, 22, 38, 40, 54, 56). La troisième ligne de la figure contient les premiers temps du pavage rythmique (le premier temps de la ligne est le 72ième temps, le renouvellement du cycle)[17].

La structure de ces pièces nous échappe en tant qu’auditeur puisqu’il est presque impossible de garder trace des rythmes internes et externes de ces canons. Dans le cas de la pièce de Lévy, l’auditeur fait face davantage à des informations continues qu’à une structure contrapunctique (Andreatta et Agon, p. 67); l’introduction du canon est très subtile. Par conséquent, il est normal de s’interroger sur la valeur de ces compositions comme œuvres musicales, ou du moins celle de l’apport rythmique de ces compositions. Au sujet de son propre usage des canons de Vuza, Lévy mentionne que l’oreille ne perçoit pas le canon ni la répétition, mais qu’il est tout de même possible d’en dégager un sens général de cohérence structurel (Lévy, p. 30). C’est le pas vers la recherche d’une structure cachée qui, en fait, en donne toute la valeur perceptive. Comme l’asymétrie des rythmes Euclidien les rend intéressants, la structure irrégulière de la décomposition des groupes non-Hajós font des canons de Vuza des structures riches qui cachent en fait tout un réseau d’informations. Il n’est pas surprenant de voir que ces deux exemples tirent leur complexité d’une structure extrêmement asymétrique, celle des nombres premiers et relativement premiers.

FabienLevy

Figure 15: Représentation de la section qui contient le canon de Vuza dans la partion de Fabien Lévy

Comme le démontre l’historique des différents apports de la musique, des arts visuels, des mathématiques et de l’informatique, ces œuvres se positionnent à l’intérieur d’un réseau de concept énorme ce qui fait en sorte que ces compositions ne sont ni fondamentalement musicales, ni mathématiques, ni visuelles. Leur essence réside en leur structure  qui apparaît comme la conséquence d’un échafaudage construit à partir de la théorie des pavages, de canons rythmiques eux-mêmes partiellement issus des pavages harmoniques[18], et de la théorie des groupes. Ne considérer ces œuvres que dans leur modalité musicale revient à n’observer qu’une façade d’un palais majestueux.

C’est la nature rhizomique de ces structures qui explique que les répercussions se multiplient autant par les futurs défis compositionnels qu’elles impliquent que par les nombreuses recherches mathématiques qu’elles engendrent. Sa valeur ne tient pas seulement dans charge synthétique d’éléments de plusieurs sens et paradigmes, mais elle en doit aussi à sa capacité à élargir notre perception tant à la valeur rythmique qu’à la profondeur sémantique de l’œuvre.

Si une œuvre peut prendre de la valeur et faire sens, ce n’est pas simplement par la force de ces affects purs; la lecture de l’œuvre passe également par ce qu’elle implique comme savoirs. Plus le réseau de savoir est vaste, plus les schèmes impliqués sont nombreux et plus la valeur sémantique de l’œuvre gagne en puissance. Il est évident que la lecture d’un canon de Vuza implique une quantité de savoirs qui dépasse largement celui d’un auditeur non averti et si cet espace possible de compréhension laissé par l’œuvre découle de la nature interdisciplinaire qu’elle sous-tend, c’est également parce qu’elle invite à participer à cette transgression des frontières et remplir cet espace vacant. L’écriture procédurale se positionne précisément dans cet espace libre parce que ce lieu permet d’accéder rapidement à divers paradigmes.

[1] Valeurs pour lesquelles le polynôme donne zéro.

[2] Petite note intéressante, les racines irrationnelles étaient nommées asamm par Al-Khwarizmi, c’est-à-dire sourde ou muette. Gérard Crémone a traduit le terme par le latin surdus. (Dahan-Dalmedico et Peiffer, p. 85)

[3] En particulier, il fit la découverte des groupes de symétrie des polyèdres. (Stillwell 1994, p. 127)

[4] Connue désormais comme le programme d’Erlanger suite à la fameuse conférence qu’y donna Félix Klein.

[5] L’axiome stipule que par un point extérieur à une droite il passe une et une seule droite parallèle à la première.

[6] Fini car il possède un nombre fini d’élément comme Z/12Z, et abélien car commutatif, i.e. a + b = b + a.

[7] Plus précisément un sous-groupe du groupe original.

[8] En fait, la question mena à plusieurs autres conjectures et hypothèses, dont celle de Rédei qui ommet la cyclicité du groupe (Szabó, p. 28) et celle de Furtwangler qui permet de recouvrements partiels entre les cubes (Andreatta 2011, p. 48-49)

[9] Regular Complementary Canons of Maximal Category

[10] Chaque temps est couvert une seule et unique fois.

[11] Notons que des recherches afin de permettre des pavages asymétriques ou non réguliers existent également pour le pavage du plan. Escher déjà dans ces notes personnelles développait des formes complexes pour ses pavages à partir d’un carré. Toute transformation devait de faire à l’opposé sur les arrêtes transversales, ou de manière similaire sur les arêtes longitudinales. (Schattschneider, p. 48) Cette méthode revient en fait à appliquer des transformations continues sur deux cercles sur le tore de sorte que ces cercles soient respectivement longitudinal et transversal, qu’ils ne possèdent qu’un point d’intersection et qu’il ne respecte pas le théorème de Jordan sur le tore. Cela découle du fait qu’un pavage carré du plan cartésien est également un espace de recouvrement pour le tore (Munkres, p. 339)

[12] Il passe par exemple par l’utilisation des transformations de Fourier discrètes appliquées aux groupes finis localement compacts.

[13] Afin d’obtenir ce résultat, il est possible de passer par un algorithme décrit par de Bruijn en 1955. L’article d’Andreatta offre la démarche complète afin d’obtenir ce résultat à partir de l’algorithme de de Bruijn.

[14] Les deux derniers ont trouvé 252 nouveaux canons pour Z/108Z. (Andreatta 2011, p. 52)

[15] Notons que les deux articles d’Emmanuel Amiot «À propos des canons rythmiques» et «Why Rhythmic Canons Are Interesting» offrent une liste explicite des résultats mathématiques qui sous-tendent l’ensemble des recherches sur les canons rythmique, et entre autre les canons de Vuza. Leur lecture est donc fortement conseillée pour quiconque cherche à approfondir sa compréhension des structures et théorèmes mathématiques qui nourrissent ces recherches.

[16] Cette pièce a été utilisée pour le film Eclipse de Pascal Signolet. Il serait intéressant de voir si la structure profonde de la pièce est mise en résonnance avec celle du film. Le long cycle des éclipses et le long cycle des canons de Vuza laissent entrevoir une telle possibilité.

[17] Il est possible d’écouter des extraits sur le site du compositeur.

[18] L’article de d’Andreatta (Andreatta, 2014) offre une belle introduction aux liens entre la théorie des groupes, des pavages, des progressions harmoniques représentées sur des cycles et les tonnentz.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s