Automated Process as art: Authorship from Mathematics to Visual Arts (Part 2)

In between these poles of mathematic as subject, as structure and as narrative construction stands the automated processes. In the last 60 years or so, computers have galvanised and specialised the precision of the relations between the abstract mathematical procedures and visual content. Indeed, it has been possible by means of automated processes, especially in the construction of geometrical operations. The rest of the article focus on structures defined on abstract art instead of figurative or narratives as in the case of Last year in Marienbad. As a result, we are interested in authorship in arts and sciences from a double perspective: as creator of an aesthetic geometrical result and as inventor of an abstract structure. A clear and simple example of such a problematic objects can be found in the Ulam spiral. Bored during a meeting Stanislaw Ulam started to organise numbers in a spiral and in this structures some patterns seem to appear for prime numbers. This simple object of number disposition leads to beautiful imagery when focusing on the prime numbers disposition and to some new mathematical results about these prime numbers.

The signature over the aesthetic constituents being often available, we need to address the question to find the source of the structure and its authorship.

In order to comprehend this relation tied between a creator and an automated process, we need to distinguish between the different tributary relations linking an artistic visual object and an abstract automated process. It is important to underline the implied relation might appears in both directions; an artistic object can be obtain by applying an automated process, and oppositely, an automated process can be discovered by trying to solve an artistic problem. Both sides of this equation share the common ground of creation and the results, no matter what is the original paradigm, lay on shared space of double probability: the result stands in the midway between pure technicality and art. The next step of application of the automated process is fundamentally unpredictable. For this reason, the automated process is in equal rights as much an invention as an artistic creation. Of course, once a seed bloomed, layers and layers of artistic objects, related automated process, solutions to various problems and, finally, new problems might add to the complexity of the object. We study some examples in the following paragraphs.

                A practice of tiling the planarity of a wall or a floor is maybe as old as architecture itself. There exist infinitely many ways to tile the plane, but these can be grouped in finite sets when restrictions are added or when classifications are needed. If we restrict the tiling to congruent tiles, then a classification is made possible by considering reflections, rotations, translations and glide reflections of the original tile. The artist Maurelius C. Escher studied these different patterns of tiling and tried to find all possible patterns. Escher found an article by Polya and Haag on crystallography giving the complete classifications of such tilings and Escher based his next experimentations on these observations. Even if Escher have found by himself almost all the patterns, it still give a good example of an abstract mathematical problem including automatic process related to an art object. In this case, the automated process constitutes of applying infinitely many translations, rotations, reflexions or glide-reflexions, to cover a space harmonically.(Figure 4) (Schattschneider, p.23-30)

Wallpaper group

Figure 4: Polya’s representation of the wallpaper groups. Source: Visions of Symmetry, p. 23

The story does not end here. Of course, different types of tessellations not involving congruent tiles have been explored as a legacy to Escher’s work and covering problem, like the Penrose aperiodic tiling and fractal tilings. The problem even evolved to include other surfaces; mathematicians and artists have explored the tiling of the sphere and this led even to tessellations on other surfaces as the hyperbolic plane or the projective plane[1]. (Figure 5) Therefore, the creation of the tiling problem is double, it includes the eventual creation of a mathematical knowledge as much as of series of artistic creations. Moreover, it creates the space of discussion in which both disciplines challenge each other.

Jos Leys

Figure 5: Jos Leys Hyperbolic 1

A similar story is hidden behind conformal mappings. Conformal mappings are functions that project images between surfaces, possibly from itself to itself, by preserving angles of intersection between lines. Conformal mappings arises as a main interest in the study of projections and the complex plane where they naturally arise as differentiable functions. A commonly used conformal mapping from the sphere to the plane is called the stereographic projection. To obtain this projection, we can imagine we set a sphere on a plane, and from the North Pole, i.e. the more distant point from the sphere, we traces rays crossing the sphere at a point and reaching the plane at second point. The stereographic projection is obtained when mapping the whole sphere to the plane in that respect.

In the last decades, photographers like Alexandre Duret-Lutz have used projection in order obtain pleasant photographs offering different spatial perspectives. The application of the stereographic projection lead to very peculiar pictures dubbed wee planets. In these photographs, objects are grotesquely deformed while keeping an overall readability due to the conformity of the projection. Ususally, the horizon surrounding the camera morphs into the circumference a small planet on the picture, resulting in pleasant cartoonesques scenes.  (Figure 6) Modern photography contains more peculiar pictures calling for stronger mathematical notions. (Lambert, 2012)

Alexandre Duret-Lutz

Figure 6: wee planet Alexandre Duret-Lutz

The study of functions in the complex plane led August Ferninand Möbius to the definition of Möbius transforms, a group of conformal mappings constructed from translations, rotations, dilations and inversions (which inverts the inside and outside of a circle before rotating it). These functions are conformal and they can all be link to the stereographic projection through some motions of the sphere. (Arnold and Rogness) For instance, to obtain the inversion, it is equivalent to rotate the sphere upside down before applying the stereographic projection. The use of Möbius transformations is also recognisable in the photographs of Duret-Lutz, especially when the sky stands as a disk in the middle of the picture as a result of the inversion. Interestingly, artists are now applying similar techniques to video, Ryubin Tokuzawa[1]. (

               Other conformal mappings have been explores by photographs like Seb Pzbr or Josh Sommers. The utilisation by Sommers and Pzbr of a special composition of conformal mappings comes, though, from outside the mathematical discipline. In 1956, Escher worked on the highly complex Printing Gallery. The conformal mapping he tried to develop was so elaborate he could never finish his work, leaving a blank space in the middle. Half a century later, Lenstra and his team finally modeled the transformation Escher had in mind and, with the help of computers, they filled the blank spot. (Smit and Lenstra) The transformation, usually named the Droste effect -after on old advertisement using a self-referential figure- is now used by photographers to propose a wide range of new imageries, from self-portrait to the representation of abstract architecture. (Figure7)[1]

Droste Effect

Figure 7 : Droste effect on architectural desing

The story of such photographs lies on multiple layers on each of which part of the authorship is diluted. It comes from a rich balance of complex numbers, functions, projections, Escher’s vision and programmers that integrated this process in code to obtain the results on photographs. This automated process and results from a 300 years old long dialogue where the authorship was constructed.

It is of prime importance to underline the presence in these pieces of art of the automated process: without the programs applying the conformal deformations, some photographs and videos, could never have existed. The creations, unreachable solely by humans, exist at the very limit of the creator’s capacity. It is the result of a tremendous collaboration where the sum worth more than the parts.



[1] For a clear introduction to the topic the reader is invited to consult John Stillwell’s work: Geometry of Surfaces, Springer, 1992.


[1] Source :


Automated Process as art: Authorship from Mathematics to Visual Arts (Part 1)

There is a process involved behind every artistic and scientific productions. These processes can evolve, change directions and motivations, but at some point when the exact procedure is defined, automated processes can be constructed. The automated procedure is then available for others to be experimented and modified in order to find new applications and results. As this extra step is taken, an extended distance appears between the original creator of the process and the final result. Although, as pointed out by Einstein, when great specialisation is involved, the scientific and the artist merge into one identity (Calaprice 245) We show in this article that this double position between art and science is particularly present when creating automated processes. When creating abstract trends of patterns and procedures, the full extent of its applications rarely stands at reachable glance. On the other hand, the creation of subdivisions as copyright and patents leads the path for creators to think about the exact applications for their creations prior to their concretisation. This paper will explore the problematic involved in such a subdivision, especially in the paradigm of modern automated technologies. Various examples involving conceptual mathematic models, automated processes and visual art will be discussed in order to clarify the problematic.

                As a first step, we compare different movies implying some mathematical concepts: Zorns Lemma (1970) by Hollis Frampton, Last Year in Marienbad (1961) by Alain Resnais and Pi (1998) by Darren Aronofski. These movies use different strategies to include mathematical concepts. The movie Pi is emblematic of the use of mathematics as a topic within its diegetic world. In this case, some concepts can be explained to the audience; the mathematical concepts are use in quotations since they don’t interfere with the structure of the movie itself. To a certain extent, these concepts could be changed for others and the structure would remain intact. As an example, the relation between the stock market and the value π could be exchange for the golden ratio to obtain a similar movie. It would remain an excellent movie with outstanding visuals aesthetic, only part of the semantic would be altered since the myth around pi differs largely from the myth around the golden ratio. These perceivable modifications would be linked to these specific numbers’ reputation outside the movie. For instance, the golden ration often being related to beauty, its use would charge scenes with a different emotional impact than the profoundly anxious and neurotic feeling that underline the whole movie. The value π does not work as a framing structure, it adds a mythological symbolism to its content and mark the film with a peculiar color coherent with the movie’s topic.

The film Zorns Lemma proposes a different appropriation of mathematical concept as a main constituent of art’s paradigm. The Zorn lemma is an important result in the foundations of modern logic and axiomatic set theory. It states that for a strictly partially ordered set, if every ordered subset has an upper bound in the original set, then the latest has a maximal element. The lemma has been proved independently by Kuratowski and by Bochner in 1922, but its popular appellation sticks to Zorn who proved it in 1935. (Munkres, p. 70)

Zorn's Kemma 1

Figure 1: Images from Zorns Lemma. Source:

The movie does not make apparent use of the lemma itself, although Frampton explicitly works its visual content from a set theoretical approach: groups of letters are combined as different sets to form words. As an example, in the second section groups of words appear ‘’organized alphabetically into sets of twenty-four and conforming to the Roman alphabet by combining i and j with u and v.’’ (Jenkins, p. 21) In this case, the abstract frame is calked from of a given field; set theory. Secondly, the object has a similar background question; how to organise elements of a set? In this case, the question is organise letters from the alphabet. The Zorn lemma appears as more than a mere abstract reference and its substitution for another theorem would note guarantee its correspondence with the movie structure. A title linked to the Pythagoras theorem, Fermat’s theorem or Gödel’s theorem would not be suitable references for Frampton’s work since we could not see a correspondence between the movie’s structure and the results of these theorems.

Jeu de Marienbad

Figure 2: Last Year In Marienbad (Alain Resnais, 1961)

A slightly different approach is explored in Alain Resnais’s Last Year in Marienbad. In this film, the main character, interpreted by Giorgio Albertazzi, often plays the game of Nim -sometimes called the game of Marienbad after the movie[1]– and asserts that by starting first this would ensure him victory. On the mathematical side, the game was proved to be solvable, meaning that there is an algorithm leading inevitably to victory. (Bouton, 1902) The victorious pattern is presented multiple times during the movie and its logic is scaled to the overall frame of interplay with memory between to two main characters. The solvability of the game is implied in the movie as the dry output of destiny: the inevitable reconstitution of the forbidden, and maybe false, memory. The hunt for this blurred memory is ended before it started as the game of Nim is won before every game. As a result, the equivalence relation between the mathematics of the game and the movie’s structure is constructed by narrative means.

L'Année dernière à Marienbad

Figure 3: Time Structure of Last Year in Marienbad by Resnais

[1] It was also called Fan-Tan at the beginning of the 20th century (Bouton, 1902)

Les fondements de l’écriture procédurale : images, espaces et algorithmie musicale de l’algèbre aux fractals. (Chapitre 2.3-2.4)

2.3 La forme de la partition et les pavages

La forme globale de la partition a déjà intéressé d’autres compositeurs. Un exemple qui date déjà est la partition de Baude Cordier pour son canon cyclique Tout par compass suy composé[1]. Dans cette œuvre, la forme structurale de la pièce est reflétée dans la forme de sa partition, point qui devriendra fondamental dans la prochaine section.


Figure 8: Tout par compass suy composé de Baude Cordier. Source :

La partition musicale standard peut également limite parfois les nuances que le compositeur veut mettre sur papier. Nous avons déjà vu que problème existait déjà en terme de reproduction d’une interprétation, mais l’équivalent existe également directement au moment de la composition. Un des premiers compositeurs à avoir retravaillé la forme même de cette écriture musicale occidentale est Henry Cowell pour sa composition The Banshee. Afin d’obtenir des effets particulier, Cowell se voit dans l’obligation d’inventer plusieurs symboles qu’il explique en annexe à sa partition afin d’en permettre la bonne interprétation. Ce principe sera repris par plusieurs compositeurs autant en Europe avec des compositeurs comme Edgar Varèse, Pierre Boulez et Karlheinz Stockhausen qu’aux États-Unis avec Morton Feldman, John Cage, Milton Babbitt et plusieurs autres. Les possibilités offertes par les partitions qui n’utilisent plus la portée a motivé plusieurs compositeurs à explorer et réinventer la représentation graphique de la musique.


Figure 9: Xenakis.

Il n’est pas étonnant de voir que cette tradition se perpétue dans l’écriture musicale par ordinateur. Nombre de programmes proposent des interfaces interactives qui proposent un bon nombre de principes similaires à ces partitions graphiques. Le programme de Matthews offrait déjà une présentation graphique dans les années 50 et peu après celle de UPIC de Xenakis permettait d’écrire directement sur une surface sans passer par la retranscription note par note (Verdier c, p. 81) Plusieurs programmes de compositions par ordinateurs utilisent encore ce principe de synthèse graphique.

Dans le mouvement qui a rapproché les nouvelles formes d’écritures musicales et la peinture d’artistes comme Rothko, Jasper Johns et d’autres, la forme de la fugue est peut-être la forme musicale qui a inspiré le plus grand nombre d’œuvres visuelles. Des artistes tels que Vassily Kandinsky, Adolf Hölzel, František Kupka et Paul Klee ont tous peint des toiles faisant explicitement référence à la fugue et qui, à l’aide de motif abstrait, reprennent les motifs d’entrelacs à plusieurs voix en projetant ce principe par des entrelacs de formes et couleurs (von Maur, 2005). La beauté du fondement de ce principe de transposition vient d’une double possibilité; celle de travaillé le principe visuel de la fugue de manière macroscopique afin d’en favorisé une réception visuelle similaire comme il en est le cas pour les peintres mentionnés, mais aussi la possibilité d’en reprendre des règles d’écriture microscopique qui peuvent ensuite mener à une étude fonctionnelle de la fugue et de ses dérivés.

Une des plus belles évolutions de structure vient du canon. Par son principe de base relativement simple, la recherche sur les structures des canons a mené à de belles découvertes. Le premier effort important dans l’étude des canons est l’omission de la dimension harmonique afin de n’étudier que le rythme en soi, entreprise dont le premier pas significatif est dû à Olivier Messiaen (Andreatta 2013, p. 64). Déjà, dans son Traité de rythme, de couleur et d’ornithologie, le compositeur distingue la possibilité de construire des canons à l’aide de rythmes non rétrogrades, c’est-à-dire des rythmes symétriques par rapport à un de ses temps, c.-à-d. des rythmes palindromes. Parmi les observations faites par Messiaen, il y a le résultat que la concaténation de rythme non inversible de mêmes durées résulte en un nouveau rythme non inversible. En d’autres mots, la concaténation de palindromes possédant le même nombre de lettres donne également un palindrome. (Andreatta 2011, p. 16). Il est encore possible d’explorer davantage cette vision géométrique de la musique. Revenons pour un instant à des considérations qui incluent encore l’harmonie.

Hodges a remarqué qu’il est possible de mettre en lien le plan cartésien et l’espace de la partition musicale conventionnelle. Ou, pour reprendre les mots de Cucker à cet égard : « embed the space where music lives into the Euclidian plane » (p. 188). Or, pour se faire, il est important d’en concevoir les limites. Contrairement au plan cartésien dont les deux axes peuvent a priori posséder la même sémantique, ou le même type d’information, le plan musical lui distingue clairement l’axe des x qui prend la valeur temporelle et l’axe des y qui contient les informations sur la hauteur des notes. Il découle de ce fait qu’en voulait interpréter la valeur géométrique d’une partition, il nous est impossible de considérer les opérations qui permutent ces deux axes. Par exemple, les rotations de 90 degrés sont en générales proscrites[2]. Il est possible malgré tout d’aller chercher bon nombre de symétries qui permettent de classifier les formes géométriques possibles du plan (Hodges, p. 99)

Encore une fois selon les mots de Cucker, les canons perpétuels deviennent alors une « musical version of a frieze» (p. 194) Dans le langage mathématique, l’ensemble des opérations symétriques –qui laisse le résultat visuellement intacte – sur une bande infinie se nomme le groupe de frise[3]. Ce sont en fait les différentes manières de recouvrir une bande infinie à partir d’un motif de base et quelques opérations géométriques. Il est possible de classifier les frises de par les opérations de symétries qui permettent de conserver la frise intacte; ce sont en fait également les opérations qui permettent de recouvrir la bande à partir d’une figure initiale. Pour Hodges, les opérations possibles sont les translations, les rotations de 180 degrés et les réflexions horizontales et verticales[4]. Ces symétries peuvent servir d’outil pour le compositeur : Colon Nacarrow, par exemple, a travaillé avec tous les types de canons possibles avec ses Studies for player piano (Hodges, p. 111)


Figure 10: Les sept groupes de frise.

2.4 Canons, symétries et ruban de Möbius

L’évolution du canon démontre bien la valeur et la puissance de l’écriture procédurale. En travaillant directement sur une structure abstraite, des liens vers d’autres structures similaires se font automatiquement aux fils des siècles avec l’évolution de notre savoir sur ces différentes structures. Nous débutons ici à partir de l’exemple d’un canon précis qui est emblématique de cette évolution et des différents liens qui existent entre une multitude de structures.

Lors de sa visite à l’Empereur Frédéric, fervent amateur de musique, Bach eut la chance d’écouter une mélodie composée par ce dernier. Il improvisa même, selon ses compétences légendaires, une fugue basée sur cette mélodie. Bach rendit hommage à cette rencontre fortuite en composant L’Offrande musicale, suite de pièces basée sur ce thème et chacune inspirée d’une structure particulière. L’une d’entre elles est un canon cancrizan. Cette partition est en fait un canon dont la partition doit se lire de gauche à droite et vice-versa simultanément[5]. En termes géométriques, la partition de la seconde voix s’obtient par une symétrie verticale au centre de la partition pour la première voix[6].

Les jeux de symétries ont été perçus d’un bon œil par Slonimsky. En 1971, il proposa pour la revue Source dédiée aux compositeurs d’avant-garde une composition intitulée Möbius Strip Tease. Cette partition doit être découpée de la page et recollée comme un ruban de Möbius. Le chant qui ponctue cette composition glorifie ce fameux ruban.


Figure 11:Slonimsky et John Cage. Source :

Xantox, un peu dans la lignée du travail de Slonimsky,  reprit cette idée avec la composition de Bach. Sa vidéo en collaboration avec Jos Leys présente comment la lecture de la partition équivaut en fait à une lecture simple sur le ruban de Möbius, simple puisque nous n’avons pas à tourner la feuille de haute en bas, ce qui peut sembler une action inutile et gratuite pour certains, devient naturelle et même obligatoire sur le ruban de Möbius. Ce qui n’est pas dit explicitement dans le court métrage est que l’on considère cette surface comme transparente comme le film cinématographique, de sorte que les notes puissent se lire de part et d’autre du ruban[7]. La lecture se fait automatiquement de part et d’autre de la structure du ruban par les deux tiges de lectures. La forme du ruban permet d’exprimer qu’il n’y a en fait qu’une partition et que le point de départ est en fait aussi celui de sa fin. Il est important que cette transposition vers le ruban de Möbius ne dépend en aucun cas de la sémantique de la pièce, ou même des tonalités choisies, ce qui rend cette transposition possible est en fait sa structure fondamentale.

En 1932, dans la vague de la Gramophonmusik Georg Schünemann proposait que l’utilisation de vinyles favoriserait l’écriture de canon cancrizans puisque l’on pourrait simplement faire jouer un disque à l’endroit et un second à l’envers (Katz, p. 110) Il est désormais aisé de s’imaginer un petit programme de composition qui se dédie à permettre l’écriture de canon cancrizans presque qu’automatiquement ou doublant chaque note au début de la pièce comme une suite de parenthèse, assurant ainsi la forme du palindrome.

Il existe toutefois une méthode simple et ingénieuse qui permet une construction mécanique presque qu’automatisé de symétries musicales. Peut-être inspirée d’un travail de R. Tremblay dans le Mechanical Music Digest, Vi Hart propose une méthode efficace pour composer des symétries en se basant sur ce principe. Par un jeu de pliage, elle superpose les sections du ruban de Möbius qui doivent être symétriques afin de permettre le bon ‘’fonctionnement’’ sa composition lorsque lues sur la surface. Elle perce alors des trous dans ce papier, le déplie et obtient automatiquement le résultat désiré[8]. Il est à noter que cette écriture à l’aide des pliages est possible en fait à cause de la symétrie même du ruban de Möbius. Son écriture est davantage qu’une écriture sur le ruban, c’est une écriture à même la structure géométrique; l’apport des symétries résulte naturellement de cette écriture. C’est pourquoi elle discute à la fin de son vidéo de la possibilité d’écrire avec des réflexions glissées puisque celles-ci apparaissent naturellement sur le ruban de Möbius.

 Nous avons mentionné rapidement le groupe de pavage du plan cartésien; or il existe un équivalent pour une surface qui se nomme le twisted cylinder[9]. Pour obtenir cette surface, nous imaginons que nous avons une bande qui monte et descend à l’infini, mais qui possède une largeur précise et finie. Nous obtenons la dite surface en rejoignant les deux segments de droites en sens inverse, comme nous l’avions fait avec le ruban de Möbius. En ce sens, le ruban de Möbius n’est qu’un segment d’une coupure horizontale du twisted cylinder. Le groupe de symétrie du ruban lui est donc transmise du twisted cylinder et il est possible de montrer que le groupe de pavage du twisted cylinder est en fait généré par la réflexion glissée, (Stillwell 1992, p.32)  Cela résulte à l’écrite naturelle de composition en forme de réflexion glissée lorsque la partition se trouve sur le ruban de Möbius. (Figure 12)


Figure 12: Canon sur ruban de Möbius. Source:

Cette suite d’évènements démontre bien la puissance de cette forme d’écriture qui permet à des structures de traverser plusieurs domaines. L’étude des canons, en plus d’avoir des connexions avec des surfaces de représentation de la partition, permet de construire des liens avec des structures strictement algébriques.

[1] La forme de la traditionnelle portée est également mise à mal dans un travail de George Crumb qui transforme la partition pour lui donner de multiples formes pour la suite Makrokosmos.

[2] Il est possible d’avoir certain motifs rotationels de la sorte, mais seulement si ce n’est qu’une rotation des notes sur la portée comme dans un exemple tiré de la partition de Die Reihe 7 (1965) de Maurice Kugel (Hodges, p. 98).

[3] La notion de groupe en mathématique est importante et sera défini plus en détails dans la suite de ce texte.

[4] Notons qu’étrangement Hodges ne présente que cinq cas dans son article, contrairement à la définition du groupe de frises qui comporte sept combinaisons possibles. Cela est possiblement dû au fait que soit il considère que les deux cas qu’il ignore, la seconde et sixième ligne de la figure 10, sont équivalent à la première, soit il considère que géométriquement il est possible d’obtenir l’opération de réflexion glissée (glide reflexion) à partir d’une symétrie et d’une translation. En fait, pour le plan, toute transformation isométrique dans le plan est le résultat d’au plus trois réflexions (Stillwell 1992, p.10-12)

[5] Voici une petite animation de Michael Monroe :

[6] Pour une analyse approfondie des symétries présentes dans L’offrande musicale voir le chapitre sur la musique dans l’ouvrage de Cucker.

[7] et En fait, pour cette vidéo, xantox dit s’être inspiré de la réflexibilité en physique.


[9] Il n’est pas possible d’obtenir ce cylindre en trois dimensions, donc il reste plus simple de l’imaginer que de le construire.

Les fondements de l’écriture procédurale : images, espaces et algorithmie musicale de l’algèbre aux fractals. (Chapitre 1)

Riemann arrivait dans un paysage  où chaque point… se transforme en musique. Une ligne de zéros le long de la mer.  

 Marcus dans Adieu au Langage de Godard

Cette recherche a été produite sous la tutelle du Laboratoire La Création Sonore dirigé par Serge Cardinal. (

Le son et l’image resteront à tout jamais fondamentalement irréconciliables de par leur nature. L’une est une onde mécanique, c’est-à-dire une onde qui nécessite un milieu de propagation comme l’eau ou l’air, tandis que l’autre est une onde électromagnétique qui peut se propager dans le vide. Malgré tout, nous avons toujours tenté de juxtaposer la perception de ces ondes dans les arts et d’en favoriser une juxtaposition harmonieuse et complémentaire. Que ce soit avec de vieilles tentatives techniques comme le clavecin oculaire de l’Abbé Castel (Rousseau, p.21) ou plus généralement dans l’optique de l’œuvre d’art totale, cette quête a su motiver le travail d’un grand nombre d’artistes et de chercheurs. En fait, sans prétendre que cela en est la raison principale, il est possible de prendre comme hypothèse que cette tendance s’explique, en partie du moins, par la convergence de ces informations dans notre système perceptif.

À partir de leur transfert en influx nerveux par le système perceptif, ces ondes ne deviennent qu’un type d’information et seule la région cérébrale parcourue diffère. Évidemment, dans la majorité des cas cet influx parcourt un trajet différent et des zones distinctes du système nerveux central s’en trouvent stimulées. La compréhension de l’influx nerveux comme moteur essentiel de la sensation a permis d’envisager une «synesthésie électromagnétique» menant à «réaliser l’utopie radicale de l’abstraction». (Rousseau, p. 33) Cette position laisse sous-entendre la possibilité de s’adresser à tous les sens à l’aide d’une même source, position qui prend une valeur particulière lorsqu’on envisage des processus cognitifs et des modes et schèmes de réflexion.

Il est important de mentionner que des expériences dites pseudo-synesthésiques -comme l’association de certaines sonorités à certaines formes- peuvent survenir même chez des personnes qui ne sont pas considérées comme synesthètes. (Sagiv, p. 4) Que ces expériences relèvent d’une synesthésie réelle ou non, cela permet malgré tout d’envisager la synesthésie comme base instrumentale de l’analyse neuronale de la métaphore, tel que proposé par Hubbard et Ramachandran (Sagiv, p. 4) Sans nous aventurer dans le fondement plastique de la métaphore dans notre système nerveux principal, nous voudrions voir comment l’écriture de structures abstraites permet une écriture synesthésique dans le sens où il est possible d’appliquer ces structures dans le spectre de plusieurs formes artistiques. Dans ce travail, nous n’inférons pas que les œuvres décrites induisent des expériences synesthésiques, nous désirons simplement prendre une position théorique qui favorise des transferts de structures entre différents médiums et paradigmes, entre différents sens et différentes applications artistiques. Telle que nous la définirons, nous voulons démontrer l’importance de l’étude de l’écriture procédurale en vertu de sa force unificatrice entre plusieurs disciplines, ce qui permet à la fois de prendre une position forte dans l’étude de réseaux d’œuvres et concepts et de proposer une stature multidisciplinaire de la recherche-création.

L’objectif de relier les structures musicales à d’autres structures macroscopiques a souvent servie de nombreuses pensées et mythologies. Par exemple celles des nombres, des calendriers et de la musique s’unissent dans les textes fondateurs de l’hindouisme (McClain) ou chez Kepler et ses successeurs (Field) Il semble donc que la musique se prête bien à cet exercice d’abstraction et nous voulons voir comment elle s’articule lorsque mise en parallèle avec des structures issues des arts visuels et des mathématiques.

Nous voulons tout d’abord définir une écriture dite procédurale qui nous permet de travailler directement dans l’abstraction. Nous définissons de nombreuses caractéristiques de cette écriture procédurale à travers la description et l’analyse d’un éventail d’œuvres qui se situent toutes aux croisements de divers disciplines et pratiques artistiques. Cela nous permet de saisir ces différentes œuvres dans une perspective commune afin de comprendre quels peuvent être les prochains défis compositionnels pour les artistes et chercheurs travaillant avec du matériel qui favorise la convergence de différentes modalités sensorielles, notamment l’ouïe et la vue. Bien entendu, il existe plusieurs frontières qui délimitent le territoire que peut explorer l’auteur de compositions musicales, d’œuvres visuelles, de structures abstraites et de procédures. Certaines frontières apparaissent naturellement entre les lieux de transition possibles entre les structures de composition, alors que d’autres découlent de la complexité même de ces structures. Cette dernière difficulté laisse prévoir les limites éventuelles de la compétence d’un auteur à concevoir à l’avance les différentes formes que son œuvre peut prendre, ce qui en souligne en même temps toute la richesse.

Afin de bien exposer ces faits, nous construisons notre travail par paliers. Nous débutons par présenter quelques exemples simples d’écriture procédurale afin d’en comprendre les rouages et d’en offrir une définition synthétique à la fin de la section 1.1. La multiplication matricielle, le motif de répétition et la figure de la fugue nous servent d’exemples qui permettent de bien démontrer comment l’écriture procédurale possède ce pouvoir de traverser différentes formes artistiques et paradigmes. Puisque les mathématiques font naturellement l’étude des structures, notamment des structures d’espaces, nous précisons à la fois comment les mathématiques, l’espaces et la musique peuvent être intimement reliés pour ensuite montrer comment certaines notions particulièrement présentes en mathématiques migrent aisément vers le domaine des arts, ce qui clos le premier chapitre. Une fois fort de ces constats, nous pouvons entamer le second chapitre avec le sujet central de cette étude qu’est la présentation de réseaux dans lesquels la juxtaposition de la musique, de l’espace et des mathématiques s’avère riche de complémentarités. Les principaux aspects abordés sont l’espace de la partition, la construction de rythmes et la théorie des groupes. Des exemples de réseaux d’œuvres et concepts se trouvent, entre autres, avec la théorie des pavages, l’espace de la partition musicale et les canons rythmiques, comme de considérer la partition comme un ruban de Möbius peut aider à comprendre les symétries présentent dans une partition. Nous présenterons un cas particulier qui brille par la richesse des apports théoriques qu’il sous-tend : les canons de Vuza. Finalement, dans le dernier chapitre, nous abordons la notion de fractale comme écriture procédurale afin de comprendre certains défis que contient encore ce type d’écriture, autant comme objet théorique qu’artistique.

L’ordre choisi ne reflète en rien l’importance relative des exemples discutés, le choix se justifie par l’échafaudage qui permet de comprendre graduellement les concepts importants tout en menant naturellement vers la compréhension des prochains exemples. Tout au long du texte, nous voulons démontrer la puissance de la prise de position autour de l’écriture procédurale par la force de cohésion qu’elle offre à la compréhension de différents corpus aux allures disparates ainsi que par la position privilégiée qu’elle permet dans l’acte de création.

1.1 Vers une définition de l’écriture procédurale :

L’écriture que nous définissons ne mène pas immédiatement vers le sens et l’affect. Elle ordonne, dicte des règles, énonce un ordre et des ordres. Elle est fonctionnelle car elle impose ou propose l’ordre des choses et cet ordre résulte en une structure. Nous pouvons trembler instantanément aux mots lourds de sens comme ‘’le Sublime’’, nous pouvons rester de marbre à l’écoute ou à la lecture des organisateurs logiques ‘’et’’ et ‘’ou’’ ou ‘’not’’ et ‘’nor’’ (1). Cela s’explique par le fait que pour un concept, selon le pragmatisme philosophique, «son sens s’identifie à l’ensemble des de ses conséquences pratiques» Malderieux, p. 23). Cette écriture d’organisateurs logiques nous intéresse car elle n’affecte pas directement, elle ordonne et organise en traçant des liens entre différents éléments. Peu importe les mots qui se côtoient de part et d’autre l’organisateur ‘’et’’, l’effet en sera le même, celui de la juxtaposition. L’ensemble du sens offert par cet organisateur se construit à l’aide de la pluralité des relations sémantiques qui peuvent découler de son usage.

La création d’un organisateur de la sorte permet donc de générer un ensemble de possibles. Dans ce cas il peut, par le choix des mots, générer la répétition, l’oxymoron et à l’énumération qui n’est que l’itération de ce principe. C’est sa structure de juxtaposition de ce qui vient avant et après qui permet la naissance de ces structures binaires. Or, il n’y a pas que la langue qui peut ordonner et dicter. De manière concrète, nous pouvons trouver plusieurs exemples qui dictent l’ordre et la structure avec différents niveaux de précision.

Une première écriture de la sorte est l’écriture à même la matière. Par exemple, il est possible d’écrire de la musique à même un disque vinyle vierge à l’aide d’une aiguille. C’était d’ailleurs l’idée d’Alexander Dillman qui croyait qu’une personne particulièrement habile arriverait même à y réécrire exactement les sons désirés, même la voix humaine (2). (Katz p. 104) Proposition que Moholy-Nagy voyait du bon œil en considérant qu’une entreprise de la sorte pourrait mener vers une compréhension d’une sorte d’alphabet scriptural qui mènerait vers de nouvelles compositions, voir même à la synthèse de sons encore inconnus (Levin, p. 51) (Katz, p. 105) L’écriture à même la pellicule cinématographique constitue un second exemple de cette écriture doté cette fois d’un degré plus large de liberté. L’écriture à même la pellicule, par le dispositif cinématographique, peut mener soit à des œuvres visuelles comme les œuvres de Vikking Eggeling, Hans Richter et Walter Ruttman ou sonores comme dans le travail de Pfenninger, Fischinger, Cholpo, Avraamov et plusieurs autres qui suivront leurs pas (3). (Figure 1)


Figure 1: Graphical score by Boris Yankovsky. Source:

Le cas des portes logiques (4) s’avère également important puisque il implique une ‘’lecture’’ particulière malgré l’absence d’un geste scriptural. En effet, leurs constitutions dictent des règles très précises du passage de l’électricité comme les sillons dirigent le passage de l’aiguille. Il en résulte, un peu comme dans le rêve que caressait Moholy-Nagy, une sorte d’alphabet propre qui traduit physiquement le principe des opérateurs logiques. Il est en fait possible de construire des portes logiques qui traduisent les fonctions ‘’et’’, ‘’ou’’ et la negation (5). (Grimaldi, p 719-720). Malgré une écriture à petite échelle, le résultat final peut s’avérer extrêmement puissant si un réseau contient un nombre suffisant de portes logiques. C’est en fait un point fondamental qui marque les possibilités qui se sont ouvertes avec l’arrivée des ordinateurs en termes d’écritures au sens large. Si les noms ont comme fonction de représenter des objets réels ou abstraits, quelques mots -les organisateurs logiques- sont en fait devenus des objets réels et cela n’a été possible justement que parce que ces mots ne représentent pas, ils sont une procédure, une fonctionnalité.

Le choix lexical d’écriture procédurale s’explique de plusieurs manières. Afin de bien comprendre son essence et le choix du vocable, nous devons la mettre en lien avec les notions de structure et d’algorithme.

La structure est la matière de fond, réelle ou abstraite, sur laquelle il est possible construire. Évidemment, la notion de structure peut dépendre de plusieurs niveaux d’analyse. Pour donner quelques exemples, nous pouvons parler de la structure interne d’une porte logique faite de transistors, de la structure d’une pièce faite d’un réseau de portes logiques et finalement de la structure d’un programme qui fait usage du processeur. De manière équivalente, nous pouvons parler de la structure d’un organisateur logique, de la structure grammaticale d’une phrase et finalement de la structure d’un texte. Un terme adéquat pour notre analyse doit alors nécessairement inclure un acteur externe. Certes la structure importe énormément, mais cela va obligatoirement de pair avec une lecture de cette structure, un passage au travers de cette structure. Cette lecture peut s’avérer être directement porteuse de sens, comme la lecture d’un poème, ou bien elle peut mener vers un résultat, ou une action comme dans le cas d’un programme informatique. Lors de cette lecture, voir interaction avec cette structure, cette dernière n’est pas obligatoirement rigide. Sa modalité peut être malléable et interactive.

La procédure n’est pas non plus strictement algorithmique. Tout d’abord, contrairement à l’algorithme, la procédure admet généralement une plus grande liberté. Ce sens précis du vocable vient du fait que la procédure est généralement effectuée par un être alors que l’algorithme sous-entend une application machinale. Ensuite, l’objectif de la procédure n’est pas obligatoirement de produire ou obtenir un résultat précis. La procédure peut se suffire en elle-même comme une œuvre d’art peut le faire.

En général, l’écriture peut être celle de l’idée, d’une structure imaginée et de sa procédure opérationnelle qui peut être celle d’une de lecture au sens large. Dans ce cas, la manière de retranscrire physiquement l’objet réfléchit n’importe qu’en second lieu. Ce point il s’articule clairement comme la clef de voûte de cette pensée en termes d’écriture procédurale puisque les instances précises de l’objet imaginé ne sont plus déjà que la mise pratique d’une structure et d’un ensemble de règles; une interprétation de la structure. L’écriture procédurale peut donc s’effectuer à plusieurs niveaux qui varient de la définition de la structure comme objet abstrait à une instance réelle qui exemplifie ou laisse sous-entendre une structure.

Cette écriture procédurale, peu importe les restrictions qu’elle implique, possède un pouvoir de transgression et de transposition qui s’applique à une cartographie aux frontières multiples. La structure peut transgresser les sens, les médiums, les langues, les paradigmes. Cette capacité de transgression est l’une des qualités qui donnent à l’écriture procédurale toute sa force puisqu’en ce sens la création d’une œuvre devient en fait la création d’un corpus de par ses multiples instances possibles. Comme de nombreux exemples le démontrent, elle génère aussi parfois un ensemble de savoirs qui s’obtient par l’analyse de la structure sous-jacente.

L’écriture procédure n’est donc pas l’écriture d’une œuvre précise, c’est l’écriture d’un ensemble de structures, de règles et de processus de lecture des structures et d’applications de ces règles. Elle se caractérise par un ensemble d’applications possibles extrêmement variés puisqu’elle contient un nombre de règles immuables jumelées à un certain degré de liberté, ce qui peut mener d’autres suites d’études et de résultats.

Une figure qui permet de bien comprendre cette écriture est la création de la multiplication matricielle. Une matrice est un tableau de données mxn, c’est-à-dire de m lignes et n colonnes (6). Un processus associé à ces structures est la multiplication matricielle, donc entre deux matrices. Pour bien comprendre cette définition, nous utilisons une matrice dont les entrées sont des nombres réels. La multiplication d’une matrice mxn et d’une matrice nxl donne une matrice mxl, pour m, n et l des nombres entiers. L’élément i,j, de ligne i et colonne j, est obtenue en calculant la somme du premier élément de la ligne i avec celui de la colonne j, avec le second de la ligne i avec le second de la colonne j et ainsi de suite. (Figure 2)

Figure 2

Figure 2: Multiplication de matrices 2×2

La multiplication de matrices implique donc deux autres opérations, celles de multiplication et d’addition des nombres réels dans notre exemple (si nous considérons que les lettres minuscules de la figure 2 sont des nombres réels). Le degré de liberté se trouve ici non pas dans la multiplication des structures, mais dans la règle multiplicative et additive des éléments de la matrice, ce qui donne lieu à plusieurs résultats possible. Par exemple, si les entrés sont des nombres réels et que la multiplication des donnés internes des matrices est la multiplication et l’addition entre les nombres réels et déjà ce cas particulier mène vers différentes applications. Lorsque nous avons une matrice d’une ligne (1xn) qui multiplie une matrice colonne (nx1), donc deux vecteurs, nous obtenons qu’une seule information numérique (1×1), cet exemple n’est rien d’autres que le produit scalaire. Le produit scalaire permet entre autre de définir que deux vecteurs sont perpendiculaires dans le plan si leur produit scalaire donne 0 (7).Si nous utilisons des matrices 2×2 dont les données sont des cosinus et des sinus d’un angle, nous pouvons obtenir l’équivalent de nombreuses transformations géométriques dans le plan, tel la rotation et la réflexion, processus souvent utilisés pour les graphiques fait par ordinateur. En insérant différent paramètres reliés aux lentilles, nous pouvons déduire plusieurs formules importantes (8). Raymond Queneau, de son côté, discute de remplacer les données des matrices par des mots (9) (Queneau, p.340-345). Dans ce cas, la multiplication des éléments internes des matrices est la concaténation de mots entrecoupés d’un espace, ce qui résulte en la construction de phrases. En plus d’applications diverses, la multiplication de matrice se généralise à la multiplication de tenseurs –sorte de matrices avec un plus grand nombre de dimension- objets qui servent à effectuer plusieurs calculs en relativité générale (10). Du point de vue sonore, il serait facile d’imagine d’autre règles qui permettraient d’utiliser la multiplication matricielle dans la composition musicale.

1.2 Quelques exemples

Un exemple fort simple de procédure qui possède une grande force de pénétration se reconnaît aisément dans la formule de répétition. En littérature, la répétition se traduite par la répétition d’un mot ou groupe de mots, l’extension de ce principe dans le plan permet à cette répétition d’acquérir des qualités plus proche des arts visuels avec des répétitions de mots dans plusieurs directions. Une fois libérée de la contrainte de directionnalité conventionnelle de lecture, la répétition peut s’effectuer sur plusieurs axes de symétries et même se contenir soi-même. Dans la figure suivante, il est possible de lire le mot palindrome dans le sens horaire et anti horaire si l’on se permet de lire les lettres la tête en bas. Il en résulte que chaque mot ‘’palindrome’’ contient des segments de ses propres répétitions. (Figure 3)

Figure 3

Figure 3 : Palindrome circulaire. Source :

En musique la répétition d’un segment mélodique ou rythmique peut également s’effectuer tel quel ou à une symétrie près. Comme dans le cas précédent, la répétition peut aussi exister en elle-même et ce principe d’invariance d’échelle peut servir d’outil de composition. Pour une œuvre audiovisuelle la répétition peut trouver écho dans l’image. Un exemple simple et efficace de ce principe se trouve dans le vidéoclip réalisé Michel Gondry pour la pièce Star Guitar du groupe The Chemical Brothers (11). Dans ce vidéoclip, les sons sont associés à des éléments du paysage et la répétition des sons et motifs musicaux induit de ce fait des répétitions du paysage présenté.

Quels que soient les médiums et les sens impliqués, le motif de répétition est un exemple simple d’écriture procédurale qui possède cette qualité de traverser les frontières. Malgré des mises en pratique différentes qui peuvent mener à des effets tous aussi différents dépendamment du context (12), l’effet de base se ressent de manière extrêmement similaire. Le motif de répétition possède cette force de transgression qui lui permet de jouir d’une telle popularité d’une grande popularité, ce qui en fait une figure importante pour la grande majorité des arts.

La compréhension de l’écriture procédurale peut se complexifier lorsque qu’une œuvre est définie a priori dans un médium précis. Le roman Le naufragé de Thomas Bernhard démontre bien comment peut émerger de telles complications. Dans ce livre, l’histoire se déroule autour de trois pianistes -Weirtheimer, Glen Gould et le narrateur- et n’est constituée que d’un seul et très dense paragraphe. Dans cet énorme paragraphe l’auteur fait un usage savant de la répétition tout par la celle des pensées des personnages, des scènes et thèmes associés. Cependant, sa grande force tient dans la structure de la fugue qui organise harmonieusement les répétitions. Les trois mélodies entrelacées de cette fugue écrite sont en fait les histoires des trois personnages qui répètent sans cesse les mêmes pensées, repensent les mêmes scènes comme des thèmes mélodiques à des intervalles différents en tierces et quintes intercalées. Cependant, si la lourde présence musicale dans le livre semble légitimer la forme de la fugue comme lecture possible du roman de Bernhard, une thématique différente pourrait nuire à la déduction de cette structure. La migration entre les œuvres de structures préalablement définies dans un contexte artistique défini nécessite parfois la présence d’indices afin d’en faire une lecture adéquate, surtout lorsque ces structures atteignent un plus grand niveau de complexité. Il serait alors possible d’inversé cette perspective et de définir la fugue sur un domaine plus large que celui de la musique. Une définition possible serait : enchevêtrement décalés de figures semblables (13). À partir de cette définition, Le naufragé et une fugue de Bach appartiennent bel et bien au même corpus.

1.3 Mathématiques et espaces

Les mathématiques sont une discipline qui travaille naturellement avec des structures et c’est la raison pour laquelle elle devient particulièrement efficace dans l’analyse des œuvres d’écriture procédurale. Si l’écriture mathématique d’une preuve peut déjà posséder son rythme et son style esthétique (14), (Rothstein, p. 137), des liens conceptuels existent également entre la musique et les mathématiques. Non seulement les deux font usage d’un langage hautement abstrait, mais pour citer David Lewin «In conceptualizing a particular musical space, we often conceptualize a family of directed measurements, distances, or motions of some sort». (Rothstein, p. 130)

Il y a alors la possibilité d’étudier ces différents mappings ou celle d’étudier les espaces dans lesquelles la musique est perçue soit en tant que telle, ou soit en tant que partition. Dans cette optique, les caractéristiques mêmes de cet espace peuvent influencer la composition. Pour ne nommer que deux exemples, on peut se référer au travail d’Iannis Xenakis qui s’inspirait des surfaces réglées (15) pour composer Metastasis afin de transmettre l’effet de glissando (Cross, p. 145) (Figure 4) ou bien on peut se tourner vers le travail de Hodges qui a étudié les symétries possibles de l’espace géométrique de la partition musicale. Dans tous les cas, l’analyse de l’espace d’insertion de la musique ou de toute autre structure devient utile à sa compréhension formelle et esthétique.

Figure 4

Figure 4: Metastasis (extrait) par Iannis Xenakis

1.4 La migration entre les paradigmes

Avant d’entreprendre l’étude de cas propres au corpus mixte des arts visuels et de la musique, il importe de revenir sur une caractéristique importante de l’écrite procédurale; elle peut effectuer une migration paradigmatique, par exemple entre celui des sciences et des arts. Nous étudions brièvement deux cas qui expriment ce fait.

La nouvelle La Bibliothèque de Babel de Jorge Luis Borges présente une version architecturale de l’une des formes de l’infini. Dans cette fiction, une bibliothèque contiendrait l’infinité des ouvrages possibles. Borges se sert principalement de trois modes structurels pour arriver à transférer la notion d’infini dans sa nouvelle. La première est celle d’un espace infini. En effet, pour contenir une infinité de livres, l’espace se doit d’être lui-même infini. Ensuite, il se sert de l’explosion combinatoire pour donner un ‘’sentiment’’ de la grandeur de cet infini. Il précise que cette fameuse bibliothèque contiendrait toutes combinaisons de lettres et toutes les combinaisons de mots possibles et que par conséquent elle contient toutes les histoires possibles. Pour quiconque a déjà travaillé avec la combinatoire, cet effet risque d’être plus marquant que la description du dédale infini. L’effort de calculer les combinaisons possibles d’ensembles de lettres et mots permettent aisément de comprendre cet infini d’une manière plus ‘’procédurale’’ puisqu’il sous-entend un acte constructif de cet infini. Finalement, un autre processus est traduit dans la nouvelle de Borges. Il est habituellement admis que l’ajout ou la soustraction d’une valeur finie à une valeur infinie ne change pas la nature de cette valeur, elle demeure infinie. En terme plus concis, l’infini moins x égal l’infini. Cette négation de la possibilité d’appliquer les règles algébriques conventionnelles permet une fois de plus de comprendre la nature abstraite de cette bibliothèque. Il est à noter que la négation de l’algèbre conventionnelle cache en fait un second ensemble de procédures, celle des opérations sur les nombres transcendants de Cantor. La logique de ces opérations apparaît clairement lorsque protagoniste s’aperçoit que la censure peut bien retirer des livres, cela ne change rien, le contenu de la bibliothèque reste le même puisqu’il demeure infini.

Un second schème important qui se traduit aisément autant en arts qu’en sciences et celui de l’autoréférentialité. Nous pouvons le concevoir comme une citation d’une œuvre en elle-même, ou comme une œuvre à plusieurs paliers ontologiques équivalents. Nombre d’œuvres font référence à elle-même, que ce soit dans les arts visuels (16), en musique (17) et en littérature (18). La forme de l’autoréférentialité se retrouve également en informatique puisque plusieurs programmes doivent réutiliser le résultat de son propre calcul. Il en résulte que le code doit se référer lui-même à maintes reprises. L’écriture autoréférentielle permet de construire des formes aisément transposables puisque sa logique peut être transmise facilement en motifs géométriques -comme il en est le cas pour les fractals- et soit ces motifs peuvent servir directement de partitions musicales à l’aide d’un ensemble d’instruction qui dirige son interprétation ou soit les règles d’itérations peuvent être appliqués sur des sons ou motifs musicaux (19). De plus, sa forme possède l’avantage d’être possiblement condensée; la formule itérative de la suite de Fibonacci (20) tient en une seule ligne et pourtant la structure qui en découle est riche d’informations, du nombre d’or (Grimaldi, p. 457) à ses liens intimes avec la suite de Stern-Bricot (Delahaye 2012). La formulation de la formule récursive pour l’ensemble de Mandelbrot est probablement le paroxysme d’une complexité infinie contenue dans à peine quelques caractères scripturaux.

Un cas particulier d’utilisation de l’autoréférentialité se retrouve dans la construction de paradoxes. Le paradoxe du menteur ‘’je mens’’, le paradoxe de Russel, son équivalent linguistique le paradoxe de Grelling (Vidal-Rosset, p. 26) ainsi que le paradoxe de Löb en sont de beaux exemples. Ils se ressemblent tous dans le sens où ils impliquent des situations dans lesquelles des éléments se contiennent eux-mêmes dans leur totalité. Si cette particularité implique des problématiques du point de vue de la logique formelle, cela n’est pas obligatoirement le cas dans une œuvre d’art.

Si nous acceptons que l’une des fonctions du paradoxe soit celle de l’élargissement des perspectives, alors nous pouvons concevoir la situation suivante : celle d’être simultanément dans un niveau supérieur et inférieur d’une hiérarchie ontologique. Cette situation n’est problématique que si nous concevons qu’une seule de ces situations est possible. Dans le cas contraire nous percevons cette double identité comme une extension des règles fondamentales d’un monde diégétique et nous acceptons que plusieurs niveaux ontologiques existent. Des telles situations se produisent dans les films eXistenZ (Cronenberg 1999) et Avalon (Oshii, 2001) et une transition continue entre les palliés ontologiques peut être trouvé dans la magistrale Galerie d’Estampes de Escher (21).

Si cette propriété possède une grande puissance de fictionalisation dans les arts visuels figuratifs, elle se limite à une variation de motif dans un contexte musical. Nous reviendrons sur l’autoréférentialité vers la fin de ce texte, mais à ce point soulignons l’importance de la capacité de l’écriture procédurale à transgresser les frontières; une fois une procédure écrite, il est possible de la faire migrer d’une œuvre à une autre et d’un médium à un autre jusqu’à ce que nous trouvions son plein potentiel.

Beaucoup d’autres exemples d’autoréférentialité mériteraient d’être étudiés afin de montrer la profondeur des liens que cette écriture peut tisser entre différentes disciplines. En première ligne se trouve l’œuvre maîtresse de Douglas Hofstadter Gödel, Escher, Bach qui expose un large éventail d’œuvres autoréférentielles dans l’optique d’aller donner une preuve instinctive du théorème d’incomplétude de Gödel. Il en va de même pour les réseaux d’œuvres qui font usage de la citation; si chaque œuvre travaille sous une forme de remake, de l’échantillonnage ou de la citation, l’ensemble d’un corpus peut ensuite être considéré comme autoréférentiel à l’aide des nombreux ponts exprimés entre les œuvres. L’écriture par citation inverse le procédé d’autoréférentialité vers l’extérieur afin de créer un réseau d’œuvres qui se citent entre elles, écriture qui possède également sa structure propre qui transgresse souvent le ou les médiums impliqués.

Après avoir démontré le pouvoir de migration de l’écriture procédurale, nous voulons à présent préciser notre recherche sur le cas particulier de l’écriture qui traverse à la fois les arts visuels et la musique. Cette écriture, comme nous le verrons, prend toute sa puissance à travers la force des concepts abstraits qu’elle implique.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      


1-‘’Not’’ pour la négation et ‘’nor’’ pour le ‘’ou’’ exclusif.

2- À l’inverse, il est intéressant de mentionner le cas de Arthur B. Lingen qui à l’inverse arrivait à lire directement les sillages, ou du moins à le faire à croire. (Levin, p. 51)

3- Pour un historique détaillé de cette époque, nous recommandons fortement l’article de Levin, le site internet de Philippe Langlois ainsi que celui d’Andrey Smirnov du centre Theremin,

4- Les portes logiques sont des composantes de bases des circuits électroniques.

5-Ce qui est en soit suffisant pour générer n’importe qu’elle table de vérité et par ce fait même n’importe quel autre opérateur logique (Mendelson, p. 26)

6-Elles ont été définies par Arthur Cayley après une collaboration avec James Joseph Sylvester vers la moitié du 19ième siècle (Ouellet, p. 12)

7-Dans la même ligné, des généralisations du produit scalaire ont été offertes, notamment la perpendicularité de deux fonctions si l’intégrale de leur produit donne 0.

8- Selon la méthode des matrices de transfert.

9- Notons qu’il définit la multiplication ligne sur ligne plutôt que ligne sur colonne, mais cela revient à la même chose que de multiplié par une matrice transposée.

10- Voir les notes de Sean Carroll sur le site


12- Les 840 répétitions de la mélodie de Vexations de Satie destinées à ennuyer ses critiques (Cucker, p. 188) peuvent différer grandement des répétitions de Piano Phases de Steve Reich.

13- Le but de l’excercise n’est pas d’offrir une définition large de la fugue qui soit à toute épreuve, mais d’aider à comprendre le point de vue à partir duquel l’écriture procédurale se positionne.

14- Même que Weyl disait qu’il choisirait d’écrire le beau avant d’écrire le vrai (Rothstein, p. 139)

15- Traduction de ruled surface. Une telle surface est obtenue par le mouvement continu d’une droite ou segment de droite dans l’espace (Pressley, p. 80) Le plan, le cylindre, l’hélice et le ruban de Möbius en sont des exemples.

16-Par exemple, le bédéiste Marc-Anthoine Mathieu construit plusieurs pages autoréférentielles dans sa série Julius Corentin Acquefacques.

17-Voir le cas de La Vie est si Courte de Tom Johnson discutée plus loin dans ce texte.

18- Un grand nombre de phrases et textes autoréférentiels peuvent être trouvés dans les articles «On Self-Referential Sentences» et «Self-Referential Sentences; A Follow-Up» de Douglas Hofstadter. Les livres de McHale et Pickover en bibliographie contiennent aussi de beaux exemples.

19- Nous verrons plus loin dans le texte comment elle devient utile dans la construction des fractals et de musiques qui s’en inspirent.

20- Pour une composition basée sur la suite de Fibonnaci, le lecteur peut se référer à l’œuvre de Per Nørgård et John A. Biles (Perayon, p. 395-396). Dans le cadre de notre étude sur l’écriture procédurale, il est intéressant de noter mentionner qu’il existe un lien structurel entre le rythme infini de Nørgård et le code Gray (Shallitt, 2005)

21-L’effet est bien rendu par le zoom infini sur la transformation conforme créée par Smith et Lenstra. (

L’image retrouvée : de l’anamorphose à la transformation conforme (Partie 3)


Il existe une grande variété de distorsions que l’on peut appliquer à l’image. Elles sont toutes aussi surprenantes les unes que les autres et c’est ce qui en fait l’attrait pour plusieurs artistes. Certains types de distorsions, même simples, garantissent l’impossibilité de retrouver l’image initiale comme il en est le cas de la méthode de cryptographie visuelle de Moni Naor et Adi Shamir. . Or, quels sont les points communs et divergents qui nous permettent dans le cas des anamorphoses et des transformations de Möbius de remonter vers l’image? Quelques observations sont de mise. Premièrement, on doit constater qu’il est possible de remonter vers une image sans posséder un point de vue particulier dans l’espace. Le cas de la cryptographie est un exemple évident et il en est de même pour les transformations de Möbius. En effet, toute transformation de Möbius, aussi déformante soit-elle, possède une transformation de Möbius inverse qui permet de ramener l’image à son image originale (Gamelin 63-64). De sorte que d’une image déformée du vidéo de Tokuzawa, il est possible de ramener l’image avec le nadir au centre et le zénith comme bordure de l’image, c’est-à-dire à l’image équivalente à une Wee Planets de Duret-Lutz prise sans distorsions immédiatement après la projection stéréographique. Il est de manière équivalente possible de retrouver la position initiale de la sphère de projection avant les transformations sur celle-ci. Il existe donc des remontées vers l’image qui soit strictement techniques et non imputables à un point de vue particulier. Cette caractéristique semble être partagée par certaines anamorphoses. Par exemple, le retour à l’image dans le cas des anamorphoses cylindriques, comme celle d’Orosz, est impossible sans l’outil nécessaire.

En comparant l’anamorphose d’Orosz et les anamorphoses cylindriques des Pays-Bas du 18e siècle que l’on retrouve dans la collection de H. Tannenbaum un point particulier nous frappe, point qui s’applique tout aussi pertinemment au travail de Duret-Lutz : la peinture d’Orosz est cohérente et agréable à regarder même si on ne fait pas le retour à l’image originale (dissimulée dans ce cas) contrairement à celles de la collection de Tannenbaum qui semblent chaotiques sans le miroir cylindrique. Ce principe va encore plus loin dans le cas de Duret-Lutz où le retour à l’image n’a pas lieu de se faire. L’œuvre est l’image déformée et la petite planète constitue en soit un monde à part entière sur laquelle on s’attend à voir ressurgir le petit prince. Les images sont vendues telles quelles par l’artiste, sans aucune piste pour la reconstruction. Il y a donc possibilité de comprendre une image sans avoir à remonter vers l’image originale.

Il devient alors intéressant de chercher à comprendre ce qui permet à une image de conserver une cohérence. Cette possibilité est-elle engendrée les mêmes principes des anamorphoses qui permettent la transition d’image chaotique à l’image compréhensible en se positionnant au point de vue approprié?

La piste qu’il semble naturelle de prendre vient de la définition même de transformation conforme. Comme mentionné auparavant, ces transformations conservent les angles d’incidence aux croisements de lignes. En regardant une gravure de Schön ou les graffitis du TSF Crew, l’image comme telle ne semble aucunement préservée Cependant, si le spectateur arrive à reconnaître l’image du point de vue adéquat, c’est bien que l’image retrouve les bons angles d’intersections en arrivant sur la rétine. On a donc une transformation conforme, en plusieurs étapes, entre l’image originelle avant sa construction déformée et l’image finale rétinienne.

L’image anamorphique rétinienne possède une autre caractéristique : c’est une homothétie. C’est-à-dire qui même si l’image rétinienne est beaucoup plus petite que l’originale, les longueurs sont toutes proportionnellement plus petites par un certain rapport d’homothétie k, et les aires le sont par le carré de ce rapport. Un argument simple pour le démontrer serait de faire une triangulation de l’image, c’est-à-dire de la découper en une somme finie de petits triangles. Pour que deux triangles soient homologues, il suffit que deux de leurs angles soient égaux, ce qui découle directement de la discussion du paragraphe précédent. Trivialement, les images de la projection stéréographiques et des transformations de Möbius ne conservent pas les aires. Par exemple, pour la projection stéréographique, un cercle minuscule autour du pôle sud se retrouvera projeté vers un immense cercle avec son contour très loin de l’origine. Par les cas de l’inversion, on peut voir que les aires ne sont pas proportionnelles.

Il semble pour l’instant que les ressemblances s’arrêtent ici. La conformité est partagée dans tous les cas, mais pas l’équivalence des aires. Tournons-nous maintenant vers la psychologie de la perception afin de voir comment celle-ci peut souligner l’importance de ces caractéristiques dans la reconnaissance d’image


Au cours du dernier siècle, de grandes avancées ont permis une meilleure compréhension de notre système visuel. Ces découvertes ont permis entre autres d’expliquer un grand nombre d’illusions d’optique et de mieux comprendre le fonctionnement de la réception des objets visuels. Dans un article important, Irving Biederman a mis sur pied sa théorie des géons, ou constituants visuels des objets. Il présente entre autres l’effet de l’ablation de certains éléments d’objets visuels. L’un des résultats importants concerne les lignes et leurs intersections. Dans une expérience, il effaça 50% des lignes de deux manières différentes. Une fois en ne touchant qu’aux segments milieux des lignes et l’autre en touchant aux intersections. Il observa que les sujets avaient beaucoup plus de difficulté à reconnaître les objets lorsque des intersections de lignes avaient été enlevées. Il en va de même aux constituants. Par exemple, un avion auquel on a enlevé une aile est plus difficile à reconnaître que si l’on enlève une bonne part des intersections des lignes qui le représentent. La conclusion est que les intersections de lignes sont des constituants extrêmement importants pour la reconnaissance d’image (135-140). Pour se convaincre de l’importance de l’angle entre les lignes, on peut regarder dans une chambre d’Ames et voir les gens y changer de grandeur. Comme l’explique Ramanchandram, les présuppositions concernant les angles entre les lignes d’une pièce sont si fortes qu’elles outrepassent le fait absurde que les gens y changent de forme.

Cette expérience semble expliquer pourquoi le spectateur malgré la difformité de l’image anamorphique plus traditionnelle, est apte à reconstituer et reconnaître cette image. Ce n’est cependant pas une grande surprise puisque l’image rétinienne est une homothétie de l’image originale. L’expérience devient fort intéressante lorsqu’on l’applique aux images obtenues par transformations conformes.

Il est certain que la conservation des angles doit être jumelée à d’autres principes de base de la reconnaissance d’objet, notamment ceux de la gestalt. Ces principes sont simples mais évocateurs : un objet qui est entouré doit être la figure, la planète de la figure 12 est entouré de bleue; la partie la plus petite doit être la figure; ce qui est symétrique à plus de chance d’être une figure; les lignes parallèles déterminent une même figure; ce qui est de la même couleur doit appartenir à la même figure (Wolfe 87-89). Observons par exemple la figure 15 avec ces considérations en concert avec la conservation des angles. Il y a ici une difficulté à comprendre que le sol est un objet car il entoure plutôt que d’être entouré comme dans le cas des Wee Planets. Il reste tout de même certains éléments aisément identifiables. Par exemple, du sol partent des lignes perpendiculaires à celui-ci mais parallèles l’ l’une à l’autre. Ensuite, ces lignes parallèles sont proches et contiennent toutes la même couleur brune donc devraient être unies en une figure. Finalement, de ces parallèles se ramifies des perpendiculaires contenant également du brun. On reconnaît donc des arbres.


Figure 15: A Hole in the Ground de Seb Pzbr

Les mêmes principes s’appliquent pour la troublante vidéo de Tokuzawa. Le regroupement des objets et les angles d’incidences restant intacte de sorte que l’on arrive à déchiffrer les éléments de la scène. Il reste que, en congruence avec notre système visuel, l’image nous semble plus naturelle lorsque les points à l’infini sont plus éloignés les uns des autres, lorsque l’image est une Wee Planet avec un point de fuite en bordure de l’image. Lorsque les deux points noirs sont trop rapprochés, un autre phénomène se produit. Retournons à la théorie de la perception pour le comprendre.

Dans son même article sur la théorie du système visuel, Biederman discute de l’effet de certaines illusions d’optique dont le fameux triangle de Penrose  (Figure 5). En revenant sur l’importance des intersections, il discute du fait que chacune des intersections de lignes aux coins du triangle nous impute une vision tridimensionnelle de l’objet, même si son sens global est contradictoire. Les objets peuvent donc être localement cohérents mais tout en restant difficiles à interpréter dans leur ensemble (Biederman 135-140). C’est un effet que l’on retrouve couramment chez les artistes adeptes d’illusion comme Escher ou Orosz. Il semble que le même effet se produise avec la vidéo de Tokuzawa, principalement lorsque les deux points de fuite se rapprochent. N’ayant pas l’habitude de percevoir le monde ainsi, nous n’arrivons pas à en faire un sens : même si techniquement la scène est stéréoscopique, nous la percevons comme se déroulant seulement en avant, ou derrière l’écran. Les transformations conformes sont donc des outils importants qui permettent de représenter différemment les espaces en trois dimensions. Le cas de la projection stéréographique et les images de Duret-Lutz nous montrent comment il est possible ainsi de faire un espace tridimensionnel abstrait mais qui reste parfaitement intelligible alors que le travail de Tokuzawa démontre que l’on peut représenter un monde localement intelligible mais difficile à interpréter dans son ensemble.

Comme nous l’avons vu, le terme anamorphose est assez générique et ne permet pas à lui seul de bien rendre compte des nuances qui forment l’ensemble des œuvres que l’on peut trouver dans cette catégorie. Résumons un peu les différentes observations obtenues.

L’étymologie du mot anamorphose fait référence à la possibilité de retourner vers une image à partir d’une image modifiée. L’acceptation conventionnelle du mot permet l’usage d’un outil pour retrouver cette image originale. La définition de Baltrusaitis du mot implique le positionnement du spectateur à un point de vue particulier. Des images comme les photographies de Duret-Lutz permettent le retour vers une image, mais cela ne constitue pas le but de l’œuvre. Un point de vue particulier du spectateur n’étant pas requis, cela empêche ces œuvres d’être considérées comme anamorphoses au sens de Baltrusaitis même si un processus permet de retrouver l’image originale. Ces différences n’empêchent pas les anamorphoses et les images obtenues avec la projection stéréographique et les transformations de Möbius de partager certaines caractéristiques importantes à leur réception, celle de la conservation des angles d’intersection des courbes. Ce point commun permet une exploration de notre perception de l’espace tridimensionnel.

Cette caractéristique de conserver les angles est une caractéristique des transformations conformes dont les transformations de Möbius et la projection stéréographique ne constituent qu’un échantillon.  La compréhension du lien entre conformité et réception de l’image peut mener vers deux considérations importantes. Premièrement, lorsqu’une image est identifiable même après modifications, il semble légitime d’aller vérifier si la transformation est conforme. Prenons un exemple précis. En 2003, le mathématicien H. Lenstra et son équipe ont réussi à comprendre la transformation qu’Escher avait tenté d’effectuer dans sa lithographie Prententoonstelling , (L’exposition d’estampes, 1956). La transformation était d’une telle complexité qu’Escher n’arriva pas à terminer son œuvre et il fallut attendre près de 50 ans pour voir Lenstra et son équipe y parvenir (Lenstra 104-105). Depuis, plusieurs photographes ont entreprit de reconstruire des images similaires en utilisant les même transformations. Les résultats sont très complexes mais restent presque parfaitement intelligibles. Lenstra confirme notre intuition en définissant la relation mathématique utilisée pour modéliser et compléter le travail d’Escher. Cette transformation à base de fonctions exponentielles et logarithmes est une transformation conforme (Gamelin 449). est étonnant de voir que les principes de projections peuvent également servir à définir cette relation. En effet, la transformation décrite par Lenstra peut être décrite en passant par la déformation d’une image projetée sur un cylindre (Carphin, Rousseau 21-24).

Inversement, il pourrait être intéressant d’expérimenter avec une série de transformations conformes et observer à quel point les images restent intelligibles. Ces expériences pourraient sûrement donner lieu à plusieurs œuvres intéressantes qui reviendraient confronter notre perception de l’espace. Pour le moment, l’utilisation cinématographique des projections reste une pratique limitée à quelques artistes spécialisés mais il est évident que ces techniques pourraient mener à des séquences intéressantes notamment dans le domaine de l’humour et du vidéo-clip. La transformation d’Escher-Lenstra donne lieu à quelques vidéos de zooms sur une image fixe infinie, mais il est à croire que cette technique serait intéressante dans un cadre narratif. On voit en autre que, puisque par une image du type de Tokuzawa on arrive à représenter une sphère tridimensionnelle, en juxtaposant plusieurs de ces images on arriverait à représenter un espace avec un grand nombre de dimensions. La production de dédales avec un grand nombre serait également possible en juxtaposant sphériquement plusieurs images de ce type.


Figure 16:Obligatory Droste Self Portrait par Josh Sommers


Nous avons tenté de comprendre et de classifier quelques œuvres en les considérant dans la perspective de l’anamorphose. À l’aide d’un retour sur l’histoire des théories de la perspective nous avons pu entreprendre une analyse qui contient l’idée des points à l’infini. Utilisant la projection stéréographique et finalement les transformations conformes, nous avons réussi à comprendre davantage les photographies d’Alexandre Duret-Lutz et certaines vidéos que l’on retrouve sur internet. Une fois cette compréhension acquise, la comparaison avec la définition d’anamorphose et des différents types d’anamorphoses nous ont à la fois permis d’exclure les photographie de Duret-Lutz des anamorphoses et de trouver un point commun avec celles-ci : la conformité. La théorie de la perception a permis de consolider notre analyse de la conformité ainsi que de confirmer son importance comme élément d’analyse dans notre entendement de la perception de l’espace réel ou virtuel. Finalement, nous avons ouvert des pistes d’analyse et d’explorations artistiques se basant sur le concept des transformations conformes. Les isométries étant déjà bien présentes dans les arts visuels, il serait fort intéressant de piger dans le grand catalogue des projections et transformations du plan pour tenter d’élaborer des œuvres et hypothèses sur les transformations qui conservent les aires afin de mieux saisir leur importance.

L’image retrouvée : de l’anamorphose à la transformation conforme (Partie 2)


Les adeptes de projections, artistes ou scientifiques, ont développé au fil des siècles une multitude de techniques différentes pour faire passer les images d’un type de surface à une autre. Évidemment, une des questions découlant de la prise de conscience de la sphéricité de la Terre était celle de la projection d’une sphère vers le plan (et vice versa) afin de permettre des cartes précises. La recherche d’une projection adéquate fit apparaître des techniques, comme celle de Mercator, avec leurs avantages et désavantages. Les types de projection sont nombreux et contiennent tous certaines nuances qu’il faut bien savoir déceler.

Une des projections les plus importantes, étudiée depuis l’antiquité (Snyder 154), est connue sous le nom de projection stéréographique. Dans cette projection, on place la sphère sur un plan en la faisant reposer sur son pôle sud et du pôle nord on trace une ligne droite qui traverse la sphère en un point et finalement rencontre le plan. Le point sur le plan est le point de projection de celui de la sphère, c’est l’endroit où ce point se retrouve après la projection (Figure 11). Si l’on fait la transformation inverse, chaque point revient à son point initial sur la sphère. Plus on s’éloigne vers l’infini dans n’importe quelle direction du plan, plus on se rapproche du pôle nord après la transformation inverse qui ramène les points sur la sphère (Gamelin 11-13); (Pressley 109-111). La bordure infinie du plan dans toute les directions, l’horocycle, est un point à l’infini lorsque considérée dans cette projection.


Figures 10: Anges et démons de Esher


Figure 11: Projections stéréographiques

En cherchant des images de projections stéréographiques, on tombe rapidement sur le travail d’Alexandre Duret-Lutz, photographe et informaticien français. (Figures 12 et 13) Ces images à la fois belles et vaguement humoristiques laissent difficilement entrevoir l’application de la projection stéréographique. Heureusement, Duret-Lutz explique très clairement la démarche qu’il a suivi afin d’obtenir son résultat. . Il débute en prenant des photographies d’un lieu à 360° horizontalement et à 180° verticalement. Ces photos, raboutées toutes ensembles peuvent former une sphère dans laquelle se trouvait la caméra au moment de la prise des clichés avec le zénith comme pôle nord et le nadir comme pôle sud. Cette sphère est l’équivalent photographique d’une Termesphere, mais virtuelle et perçue de l’intérieur. Une fois cette sphère virtuellement construite par ordinateur, Duret-Lutz applique la projection stéréographique. . C’est la raison pour laquelle dans les Wee Planets comme elles sont souvent nommées sur internet, les objets qui s’élèvent vers le ciel le font en direction de la bordure de l’image puisque cette bordure, en toute direction, représente le point à l’infini et donc le zénith. La liste des photographies faisant usage de cette projection est longue et donne lieu à une panoplie d’effets forts intéressants.


Figure 12 : Wee Planet par Alexandre Duret-Lutz


Figure 13: Wee planet par Alexandre Duret-Lutz

Si le principe s’applique à la photographie, il est normal qu’en remplaçant les caméras photographiques par des caméras vidéo on puisse obtenir des vidéos similaires et il semble que l’une de ces premières expériences ait été faite en 2008 par Nate Bolt. Depuis, d’autres passionnés de projection ont suivi la tendance. On peut souligner en particulier le très beau travail de Mark Macaro.. On trouve même désormais des travelings de caméras qui s’effectuent sur des Wee Planets, ce qui revient à dire que le pôle nord de la projection bouge en permanence comme dans Zach Walks Around dans lequel Zack Palmer utilise une sphericam. D’autres vidéos poussant encore plus l’expérimentation ont vu le jour et nous y reviendrons plus loin dans ce texte.


Premièrement, il faut préciser qu’il existe différentes manières de projeter une sphère sur un plan. Les projections utilisées par Mercator, Miller ou Cassini par exemple projettent la sphère à partir de son centre sur un cylindre qui l’entoure (Synder 37-38). D’autres projettent la sphère sur un cône que l’on déplie par la suite pour obtenir une carte, c’est le cas des projections de Albers ou de Lambert. Malgré de nombreuses caractéristiques intéressantes, ces projections ne semblent pas être utilisées dans la production de photographies artistiques pour l’instant et pour cette raison nous limitons notre intérêt à la projection stéréographique.

Les projections entre deux surfaces ont tendance à modifier certaines propriétés géométriques telle que la longueur ou l’aire. On sait désormais qu’une conséquence directe d’un théorème due à Gauss, le Théorème Egregium (remarquable), est qu’il n’existe aucune projection isométrique entre la sphère et le plan (Pressley 229 et 238). C’est-à-dire qu’il n’existera jamais une carte sur laquelle les longueurs sont proportionnelles à celles sur le globe. Ces longueurs se retrouvent obligatoirement rallongées ou rétrécies. Il y a principalement trois caractéristiques que l’on regarde lors d’une projection. Cette analyse en revient à une précision des interrogations d’Alberti, à savoir quelles sont les caractéristiques géométriques conservées entre deux perspectives (Dahan-Dalmedico, Pfeiffer128), ou dans notre cas entre deux images sur deux surfaces différentes après une projection. Si les longueurs sont conservées, on dit qu’il y a isométrie. Si les aires des sections sur la première surface sont conservées sur la seconde surface on dit qu’il y a équivalence. Finalement, ce qui nous intéresse ici, si les angles entre deux courbes qui se croisent sont conservés, on dit que la transformation est conforme. Conséquemment, on peut étudier la projection de certaines figures géométriques. Par exemple, on sait que pour la projection stéréographique, les cercles qui ne passent pas par le pôle nord sont envoyés vers des cercles sur le plan. Les cercles passant par le pôle nord correspondent à des lignes droites infinies dans le plan puisqu’elles vont d’un infinie à un autre, i.e., du pôle nord au pôle nord après la projection inverse (Gamelin 12-13).

L’effet d’envoyer les cercles vers les cercles est clairement visible dans le travail d’Alexandre Duret-Lutz. En prenant des photos en panoramiques circulaires sur la ligne d’horizon, autrement dit en 360° horizontalement, il crée un cercle avec l’horizon qui, dans la construction de la sphère virtuelle, se retrouve à être le cercle de l’équateur. Une fois la projection stéréographique appliquée, ce cercle équatorial est le cercle qui délimite la circonférence de cette petite planète que l’on voit. Ce cercle d’horizon devient alors cette fameuse ligne à l’infini qui permet une présentation particulière de l’espace.

Élaborons un peu sur les transformations conformes. Ce principe veut que si nous avons deux courbes qui se coupent perpendiculairement sur la sphère elles se couperont également perpendiculairement sur le plan. Évidemment, on doit avoir une définition d’angle qui convienne autant pour des courbes sur une surface sphérique que sur le plan. C’est pourquoi on utilise l’angle entre les droites tangentes aux deux courbes en leur point d’intersection (Gamelin 36-43). Il suffira de comprendre en fait que l’on sait calculer l’angle entre deux courbes sur une sphère ou un plan. Le point qui nous intéresse est le même qu’Alexandre Duret-Lutz tient à préciser dans son texte explicatif sur internet , c’est le fait que la projection stéréographique est une transformation conforme (Pressley 108-111; Snyder  154). Il précise très clairement que son travail n’est pas effectué à partir de la projection polaire (un autre type de projection) qui elle n’est pas une transformation conforme . Cette qualité d’être conforme a une grande incidence sur le résultat et parfois sur l’appréciation du résultat final. La qualité d’être conforme permet de conserver la forme générale (dans un sens large) des constituants de l’image et permet de reconnaître la scène. Ces détails seront approfondis dans la section sur la théorie de la perception. Nous avons pour l’instant deux constatations importantes : les Wee Planets sont construites à partir de la projection stéréographique et celle-ci est une transformation conforme.

Il semble qu’un certain bagage mathématique nous ait donné l’opportunité de comprendre un peu plus les Wee Planets d’Alexandre Duret-Lutz. On comprend qu’il y a conservation des cercles, conservation des angles et dilatation ou rétraction des longueurs. Or, il reste encore dans son portfolio quelques photographies qui portent à confusion. C’est le cas de la figure 14. Dans cette photographie, le sol semble former un immense cylindre au bout duquel le ciel siège. La distorsion des formes semble vaguement similaire aux autres photographies de Duret-Lutz mais le résultat global se distingue énormément de celui de la projection stéréographique. Toutes les projections que nous avons vues ou nommées jusqu’à présent avaient pour but de cartographier la terre, ou le ciel , mais aucune d’elles ne semble pouvoir donner le résultat que l’on observe. Pour comprendre l’effet obtenu sur cette photographie, il y a deux chemins possibles. L’un passe par la projection stéréographique et l’autre par les transformations de Möbius.


Dans le processus de création de ses images, Duret-Lutz fait la projection d’une sphère virtuelle qu’il a construite à l’aide de ses photographies à 360°x180°. Dans les projections stéréographiques qu’il fait pour ses images de planètes, il place le zénith comme pôle nord, point à partir duquel on tire les rayons qui définissent la correspondance entre les points de la sphère et ceux du plan. Or, rien ne l’empêche d’appliquer des modifications sur cette sphère avant de faire sa projection. En observant la figure 14, on voit que cette fois-ci le zénith se retrouve au centre au lieu d’en bordure de l’image et que la bordure de l’image est en fait le nadir de la caméra. Il y a donc inversion du pôle nord et du pôle sud, c’est-à-dire que le photographe a appliqué à sa sphère de projection une rotation de 180° verticalement avant de faire la projection. Logiquement, la rotation de la sphère ne modifie pas les angles entre les lignes sur la sphère et comme vu auparavant, la projection stéréographique conserve également les angles. Conséquemment, les objets dans la figure 14 conservent leurs formes générales et restent reconnaissables.

Ici, la question de la projection se complexifie largement et il nous faudra creuser plus profondément encore dans l’univers de la projection et des transformations de l’image. On aura besoin d’un nouvel outil : les transformations de Möbius.


Figure 14: Photographie d’Alexandre Duret-Lutz

Avant tout, il nous faut connaître le plan complexe. Le plan complexe est comme le plan cartésien, la seule nuance est que les valeurs de l’axe des ordonnées sont des valeurs qui multiplient le nombre i =√-1. Par conséquent, si j’écris le couplet (2,3), cela revient à dire que j’ai deux en valeur réelle et 3i. Le nombre complexe résultant est z =2+3i. Tout point du plan est donc associé à un nombre complexe. Comme pour les nombres réels, on peut additionner, multiplier ou diviser un nombre complexe par un autre. La transformation t = a+z, où a est un nombre complexe fixe et z un nombre complexe quelconque.  Autrement dit, on ajoute à tous les points du plan la valeur complexe a. Il en résulte une translation du plan. De manière équivalente, on trouve que l’on peut aisément construire des dilatations, rétractions et rotations du plan complet. . Les transformations de Möbius sont les transformations de la forme (az+b)÷(cz +d), où a,b,c,d sont des nombres complexes fixes. Toute transformation de Möbius peut être construite à l’aide d’un nombre fini de dilatations, translations, rotations et inversions (Gamelin 65).

La dernière transformation mentionnée, l’inversion t =1÷z, est celle qui diffère quelque peu des transformations triviales. Elle prend le point à l’infini et le positionne au centre du plan, et inversement met le centre du plan au point à l’infini dans toutes les directions, ce qui est exactement l’effet observé sur la photographie de Duret-Lutz.

Pour bien comprendre les effets de cette inversion, le lecteur est invité à visionner la vidéo s’intitulant Möbius Transform Revealed par Douglas Arnold et Johnathan Rogness. Le film présente le lien qui existe entre la projection stéréographique et les transformations de Möbius. Cette connexion entre les deux types de transformation est fondamentale pour la compréhension des photographies de Duret-Lutz et une autre œuvre qui sera présentée dans le texte, une vidéo de Tokuzawa. Afin d’éclaircir ce lien revenons sur un point de vue plus théorique. En utilisant l’idée de Desargues d’ajouter un point à l’infini dans toutes les directions, on referme  le plan et on obtient le Extended complex plane, c’est-à-dire le plan complexe plus un point à l’infini, ce qui revient en fait à la sphère de Riemann, sphère qui représente le plan complexe avec son pôle nord comme point à l’infini. Cette sphère est équivalente à celle de la projection stéréographique. Il n’est donc pas surprenant qu’il existe un lien entre les modifications de la sphère et les transformations de Möbius.

Il y a plusieurs caractéristiques des transformations de Möbius qui nous intéressent. Premièrement, ce sont des transformations conformes (Saff, Snider 389). Ceci est déjà une première caractéristique semblable à la projection stéréographique. De plus, comme il est laissé entendre dans la vidéo d’Arnold et Rogness, transformations de Möbius de base sont toutes équivalentes à un mouvement particulier de la sphère avant d’appliquer la projection stéréographique. Les translations du plan sont les translations de la sphère avant la projection. Les dilations et rétrécissement du plan reviennent à changer la grandeur ou la hauteur de la sphère. Les rotations autour de l’axe perpendiculaire au plan sont les rotations du plan et les rotations verticales mènent vers les inversions du plan. La photographie problématique de Duret-Lutz peut donc simplement être considérée comme une inversion de Möbius sur une image planaire d’une Wee Planet  comme celle de la figure 12. De plus, puisque les transformations de Möbius peuvent toutes être construites à partir des transformations de base que constituent la rotation, dilatation, la translation et l’inversion, toute transformation de Möbius peut être construite à partir de la projection stéréographique et des modifications associées sur la sphère. Il en découle que toute caractéristique propre aux transformations de Möbius peut également être obtenue à partir de la méthode de projection. En particulier, c’est vrai pour la caractéristique suivante : à l’aide des transformations de Möbius, on peut prendre n’importe quel triplet de points et le transposer vers n’importe quel autre triplet de points (Gamelin 63). Cette caractéristique est d’autant plus surprenante qu’il est possible de le faire tout en conservant les angles entre les courbes puisque cette transformation sera aussi obligatoirement conforme. Ce constat en main, il est désormais possible d’étudier la vidéo Stereographic Projection – Sample 02 (motion picture) de Ryubin Tokuzawa.

Cette vidéo est en premier lieu notable par la présence de deux énormes ronds noirs envers lesquels semblent converger un grand nombre de lignes. Plus étonnant encore est que ces grands points noirs semblent pouvoir se promener vers le haut et se muter en l’ensemble de la bordure noire de l’image qui semble elle aussi pouvoir former un point mouvant vers lequel les lignes convergent. Ces modifications continues de l’image ne semblent cependant pas modifier notre compréhension de l’image, la caméra se situe sur le toit d’une automobile qui circule sur une route. Comment chaque photographie et finalement la vidéo a-t-elle été construite? Revenons à notre duo projection stéréographique et transformations de Möbius.

Ces transformations étant équivalentes à des mouvements de la sphère combinés avec la projection stéréographique, il en résulte que l’on peut porter n’importe quel triplet de points de la sphère vers n’importe quel triplet de points sur le plan. ces transformations sont également équivalentes à des mouvements de la sphère combinés avec la projection stéréographique. Il en résulte que l’on peut porter n’importe quel triplet de points de la sphère vers n’importe quel triplet de points sur le plan. En observant la vidéo de Tokuzawa plus attentivement, on s’aperçoit que le point noir que l’on voit on début en haut de l’image est le point de zénith de la caméra placé sur le véhicule. Le point du bas de l’image est en fait le nadir de la caméra. Ce qui a été fait après le tournage est simplement de déplacer deux points des pôles pour les installer près du centre de l’image. Ensuite, modifier leurs positions respectives revient à modifier les effets visuels. En projetant le zénith vers le point à l’infini, on associe la bordure de l’image avec le point de fuite et on obtient une Wee Planet, ce qui se retrace visuellement par le point noir qui se dirige tranquillement vers le haut pour se fondre dans la bordure et laisser apparaître la Wee Planet en question avec le nadir au centre. Le résultat peut avoir été obtenu de deux manières différentes. Soit en créant une sphère abstraite à l’aide des photographies panoramiques pour ensuite modifier cette sphère par des dilatations et rotations avant d’appliquer la projection stéréographique, soit la sphère virtuelle a été projeté directement pour créer une image sur laquelle on a appliqué les transformations planaires, les transformations de Möbius.

Nous avons désormais compris l’ensemble des technicités qui se dissimulent derrière les œuvres comprenant des anamorphoses, des projections stéréographique et des transformations de Möbius. Nous sommes prêts à entreprendre une discussion sur les différentes implications, conséquences et interprétations de ces travaux dans le domaine des arts visuels et du cinéma en particulier.

L’image retrouvée : de l’anamorphose à la transformation conforme (Partie 1)

*L’article original peut être consulté à l’adresse suivante:

Il existe une infinité de méthodes pour déformer une image. Certaines permettent de reconnaître l’image originale alors que d’autres n’offrent qu’une vision chaotique impossible à reconstituer. Il n’en demeure pas moins que toutes peuvent susciter une grande curiosité. Ces méthodes ont parfois trouvé des applications comme la cryptographie, et parfois en plus d’une application, ces méthodes ont pu jouir d’une certaine popularité artistique. En cherchant les multiples types de déformation de l’image, on met aisément la main sur des photographies d’Alexandre Duret-Lutz ainsi que des vidéos qui semblent utiliser des techniques apparentées. Ces images se trouvent souvent dans une mince zone de transition entre le reconnaissable et le non-reconnaissable, tout comme les anamorphoses qui laissent entrevoir quelque peu les qualités de l’image originale. Les questions qui viennent naturellement à l’esprit sont les suivantes: ces images, bien que définies comme anamorphiques sur internet, peuvent-elles vraiment être considérées comme des anamorphoses? Si non, quelles sont les caractéristiques communes à ces deux types d’images et quelles sont celles qui les séparent? Finalement, que peut-on apprendre de ces multiples observations dans l’optique de la compréhension de notre vision du monde. Ces informations s’avèrent importantes pour l’exploration de la déformation de l’image ainsi que la mise en mouvement de celles-ci afin d’explorer de nouvelles avenues pour l’image cinématographique. Nous verrons en particulier quel est l’impact de ces déformations sur la représentation de l’espace et la navigabilité de l’espace diégétique. Le but de mon questionnement est de répondre autant que possible aux diverses interrogations mentionnées et d’en souligner l’importance dans l’expérimentation autour de l’image cinématographique.

La démarche suivie dans ce texte fut orientée par une série de concepts relativement abstraits qui se doit d’être étudiée de concert avec certaines œuvres afin de bien en saisir les nuances. Le cheminement débute par la présentation des images anamorphiques. L’étymologie du mot anamorphose, sa définition et son acceptation au sens large sont discutés et exemplifiés par diverses illustrations. Par la suite, nous  jetterons notre regard sur un point important de l’histoire des anamorphoses qu’est la Renaissance et l’apparition de l’étude de la perspective. On y décèlera l’importante innovation théorique du point à l’infini dans l’étude mathématique de la perception et nous divergeons vers l’équivalent dans les arts, notamment dans le travail de Dick Termes, Jos Leys et Maurits Cornelis Escher. Ayant compris l’importance de ce point de fuite, on pourra alors se lancer dans l’étude des différents types de projections de la sphère vers le plan et les différents critères de classification de celles-ci, en particulier la conformité. On prêtera une attention particulière à la projection stéréographique et les principales caractéristiques qui la définissent. À ce point, nous pourrons entamer l’étude du travail du photographe Alexandre Duret-Lutz. On étudiera alors ses photographies de Wee Planets du point de vue de la projection. On se tournera ensuite vers des images du même photographe qui impliquent quelques difficultés supplémentaires quant à leur réception. On devra dès lors s’outiller plus adéquatement et c’est la raison pour laquelle nous plongerons davantage dans les aspects théoriques. On étudiera e principe des transformations conformes, des transformations de Möbius et finalement on présentera quels sont les liens qui relient ces dernières à la projection stéréographique. Une fois cette démarche accomplie, il deviendra aisée d’analyser les images plus compliquées de Duret-Lutz et même certaines vidéos qui semblent user de techniques de productions similaires. Une fois les caractéristiques profondes de ces images démystifiées, il s’agira de les mettre en relation les unes aux autres et tenter de comprendre comment elles peuvent s’insérer ou non dans la définition d’anamorphose. Finalement, pour trouver un point commun à l’ensemble de ces œuvres, on se tournera vers la psychologie de la perception et la théorie de Bidermann afin de trouver ce qui les rassemble toutes. Ce passage par les techniques de projections et de transformation de l’image permet d’anticiper de nouvelles explorations dans ce domaine et d’ouvrir la voie vers une analyse de certaines images déjà existantes, surtout celles qui se propagent en réponse à la compréhension et la conclusion de l’œuvre Exposition d’Estampes d’Escher. Les principales avenues de recherche pour l’image cinématographique seront finalement discutées.


Le mot anamorphose est composé du préfix grec ana, signifiant remontée, et de morphe, la forme. Le mot signifie essentiellement le retour vers une forme. Il doit donc y avoir au préalable une déconstruction de la forme avant de pouvoir remonter vers elle. On présente généralement le résultat déformé de l’image originale, souvent impossible à bien comprendre, et il en tient au spectateur de retrouver l’image originale. Le mot anamorphose semble avoir été utilisé pour la première fois pas Gaspar Schott au 17ième siècle. Dans son ouvrage sur le sujet, Jurgis Baltrušaitis défini l’anamorphose comme «une dilatation, une projection des formes hors d’elles-mêmes, conduites en sorte qu’elles se redressent à un point de vue déterminé » (7). Tout en s’éloignant un peu de l’étymologie du mot, cette définition donne l’essentiel de ce qui doit être compris. Il y a déformation d’une image qu’un seul point de vue permet de restituer, point auquel le spectateur devra se positionner afin de comprendre l’image. Les racines de l’anamorphose se trouvent dans les perspectives allongées ou accélérées qui jouent le rôle d’éloigner ou de rapprocher le point de fuite, principalement en architecture et en peinture. Vitruve et Euclide avaient étudié ces deux types de perspectives. Dans les images de plus petits formats, les premiers exemples probants sont probablement les Vexierbild (1525) d’Erhard Schön (Figure 1) et Les Ambassadeurs (1533) de Holbein.


Figure 1 : Vexierbild de Schön

Ces œuvres présentent des formes grotesques qui, perçues d’un point de vue particulier de l’observateur, laissent entrevoir une forme cohérente. Par exemple, dans le travail de Schön on peut y voir Charles Quint en se plaçant très à droite de l’image et un crâne apparait en bas de la peinture de Holbein en se positionnant en bas à gauche du cadre. Ces types de jeux visuels ont grandi en popularité à la Renaissance et demeurent toujours appréciés. Quelques exemples supplémentaires nous aiderons à comprendre quels sont les éléments qui sont habituellement inclus dans la catégorie d’anamorphose. Il semble qu’en général ce soit l’image qui se déforme sur une surface planaire mais parfois, c’est la surface même de travail qui est modifiée et prise comme non planaire afin d’obtenir le résultat. Les premières expériences semblent venir de l’architecture des dômes et colonnades baroques. De nos jours, cette technique connaît une popularité grandissante principalement dans le milieu des graffitis, spécifiquement en France avec des artistes tels que le TSF Crew, le Paper Donut Collective ou Vincent F. Dans ces travaux d’une extrême précision, les images sont déformées sur des surfaces très complexes mais elles permettent malgré tout une perspective adéquate pour voir l’image cohérente ressortir, comme inscrite sur un plan imaginaire flottant dans l’espace. L’image voulue peut même parfois apparaître comme étant un objet tridimensionnel présent dans le lieu d’exposition (Figures 2 à 5).


Figure 2: Anamorphose de Vincent F


Figure 3: Infinity Triangle (Paper Donut Collective)


Figure 4: Graffiti anamorphique (TSF-Crew)


Figure 5: La Toison d’Art (TSF Crew)

Un autre exemple classique est l’anamorphose à miroir. Ces anamorphoses ajoutent un degré de complexité en obligeant l’observateur à posséder un type de miroir particulier en plus de se positionner à un point de vue très précis. Ces miroirs sont parfois pyramidaux, cylindriques ou coniques, ce qui donne des résultats très impressionnants comme dans le cas de L’île mystérieuse d’István Orosz. La particularité ici est que on doit s’outiller afin de remonter vers l’image, le point de vue ne suffit pas à reconstruire l’image. Il en résulte qu’en ce sens l’étymologie du mot anamorphose semble mettre en valeur un point important qui est la capacité de retrouver l’image indépendamment de la méthode requise pour ce faire (Figures 6 et 7).


Figure 6: L’île mystérieuse d’István Orosz


Figure 7: anamorphose cylindrique

Si l’on veut pouvoir comprendre et analyser les anamorphoses modernes, du moins celles qui seront présentées, il est important de retourner voir dans quel contexte ces anamorphoses se sont historiquement développées, c’est-à-dire à la Renaissance. Il n’est pas surprenant de voir que les anamorphoses ont gagné en popularité en synchronie avec l’explosion des études de la perspective puisque leur production fait un usage élaboré et original de ce savoir. Les débats entourant les méthodes à utiliser et à enseigner, surtout les différents modèles théoriques, ont ouvert de multiples venues qu’il nous est impossible d’ignorer. En particulier, la présence et l’utilisation du point de fuite, qui marque un tournant de l’histoire de la peinture, a une incidence sur les images analysées dans ce texte. Par exemple, si le point de fuite apparaît naturellement dans l’image photographique et cinématographique d’un paysage, on verra qu’il en va autrement pour certains concepts qui ont évolués en parallèle dans les arts visuels et dans les mathématiques et qui se rejoignent de manière plus subtile pour permettre des présentations de l’espace particulières que l’on retrouve désormais en photographie et en vidéo. Tel est le cas de la ligne de fuite qui découle de l’étude de la perspective.


Plus on plonge dans les lectures sur la perspective et les différentes théories qui en découlent et plus on se rend compte que plusieurs termes peuvent porter à confusion. Il vaut la peine de se pencher sur quelques distinctions. On doit distinguer premièrement deux types d’études sur la perspective. D’une part, il y a le travail pratique fait par les artistes, techniciens et scientifiques dans le but précis de faciliter la production d’œuvres d’arts. D’autre part, il y a le travail fait en perspective dans le but de résoudre des problèmes mathématiques comme il en est le cas avec certains travaux de Lambert, Monge ou Desargues (Andersen 696-702, 707-711); (Gray 25-29). Les écoles de pensées issues de ces deux méthodologies générèrent certaines querelles qui prirent une allure publique, principalement entre Desargues et le Père du Breuil et ensuite entre Desargues et son élève Abraham Bosse contre Grégoire Huret (Baltrusaitis 101). Ce qui importe ici, c’est que ces débats ont engendré une innovation dont on a encore peine à jauger l’importance. Gaspar Monge avait épuré les différents concepts et construit une version élémentaire de la géométrie nommée géométrie descriptive dans laquelle les seules informations analysées étaient l’incidence entre points et ligne en plus de l’implication de trois axiomes de bases. Il en résulte que le concept de métrique et d’angles entre les lignes n’était pas pris en compte. (Scherk, Lingerberg 3-6). Or, dans le but d’unifier cette théorie avec celle d’Alberti, Desargues ajouta le point à l’infini auquel toute ligne parallèle peut être incidente (Dahan-Dalmedico, Peiffer 130). Ce droit soudain d’ajouter un point à l’infini a permis une série d’expérimentations telles que les géométries non-euclidiennes de Polya et Lobatchevski (Dal’Bo-Milonet 38-45). Il existe évidemment une multitude d’options en ce sens. On peut théoriquement ajouter un nombre arbitraire de points de fuite, ou points à l’infini. Pour donner un exemple simple et concret, cela revient quelque peu à l’étude de différents types de projections : axonométrique, à un point de fuite, à deux points de fuite. Plusieurs artistes ont déjà profité des explorations que cela engendre. Le travail de Dick Termes en est un excellent exemple.Dick Termes dessine des scènes directement sur des sphères qu’il appelle Termespheres. Avant de se mettre au travail, il choisit le nombre de points de fuite qu’il veut utiliser. Il travaille parfois avec deux points de fuite et peut faire des constructions allant jusqu’à six points de fuite (Termes 244-245). Le cas de six points de fuite constituant trois paires de points antipodaux permet de représenter des images qui seraient l’équivalent de prendre six photographies autour d’un point fixe avec des caméras fish-eye de sorte à recouvrir entièrement la sphère sans omettre aucun point. Le résultat de l’image représente ce que l’on verrait d’un point de vue du centre de la sphère, mais présenté sur la surface extérieure de la sphère au lieu de l’intérieur. (Figures 8). L’exemple de Termes met en lumière un autre aspect de l’utilisation du point de fuite. En effet ses œuvres démontrent bien comment les points de fuites, tout comme il en est le cas avec les anamorphoses, peuvent facilement se transposer à des surfaces non-planaires. Pour en saisir l’importance dans la création d’images cinématographiques on se doit de comprendre la ligne de fuite.


Figure 8: Termsphere

Il est possible de faire d’une ligne complète l’équivalent d’un point à l’infini. Le concept a d’abord été apporté par Poncelet en s’apercevant que si deux lignes parallèles se  joignent à l’infini, il devrait en être de même pour deux plans parallèles, formant ainsi une ligne à l’infini (Coxeter 3). C’est également ce qu’avait fait M.C. Escher pour une série de gravures dans lesquelles on voit disparaitre des figures d’un dallage planaire vers l’horizon que constitue le cercle (Escher 44-45) (Figure 10). D’autres artistes comme Jos Leys ont utilisé le même procédé.Le déplacement et l’ajout de points de fuite de concert avec l’utilisation de ligne d’horizon comme point de fuite nous aidera à comprendre d’avantage la projection stéréographique et les œuvres qui en font usage.