Narrative sculptures: graph theory, topology and new perspectives in narratology

“If there is one thing in mathematics that fascinates me more than anything else (and doubtless always has), it is neither “number” nor “size”, but always form. And among the thousand-and-one faces whereby form chooses to reveal itself to us, the one that fascinates me more than any other and continues to fascinate me, is the structure hidden in mathematical things.”

A. Grothendieck. Récoltes et Semailles

There have been many attempts to model narratives from a structural point of view. From these numerous models we want to preserve a macroscopic vision that allows a quick and simultaneous understanding of various important elements of the story, which we call, following Labov’s and Wilensky’s definitions, narrative points (1). Models mapping the general structure of the story can be found, for instance, in the work of Marie Laure Ryan where both diegetic and possible events are represented and where narrative points are related by vectors. In order to preserve this telescopic view and superpose its logic with McCloud’s notion of infinite canvas (2), which will be defined in the body of this text, an option is to start with the notion of a parametric curve. Before doing so, an overview of the pragmatic motivation that led to this research is needed.

The motivation behind this exploration is taken from an interest in mathematics and an increasing amount of narratives using complex time structures and story representations. Movies like Primer (2005) by Shane Carruth lead to the construction of various charts in attempts to understand the hidden time structure (3). Source Code (Jones, 2011) and Looper (Johnson, 2012) are other examples that created the need for such macroscopic representation and many other films, like Cronocrimenes, Triangle (Smith, 2009) and the Terminator suite are cases that could have led to similar practices. In the case of the movie Looper, a three dimensional version of the chart has been produced, bringing to light wider possibilities (Figure 1).

NS Figure 1

Figure 1: Movie chart for the movie Looper by Rich Slusher.

Comic artists have explored this path in some isolated cases, either in the use of bigger expositional space (4), or as the juxtaposition of various three dimensional objects, like the booklets in Chris Ware’s Building Stories (2012). This work constitutes a box containing many booklets that can be read in different order. This creates multiple combinations for the reader exploring the diegetic world. Another interesting example, comparable to a mutoscope or other early cinematic devices, is the three dimensional cyclical structure of Julius Coretin Acquefaques, prisonnier des rêves: Le décalage by Marc-Antoine Mathieu. In this case, when leaving the story at the end of the comic, they actually enter the story again to loop the cycle.

The model presented in this paper is a first exploration in the variety of different surfaces that might be used in further narrative experimentations as well an attempt to establish the basis of a formal narrative tool for academics and artists. Therefore, the author wishes to open discussions in defining narratives and hopes to inspire artists in exploring the challenges offer by this model.

One of the key elements of our model is the use of curves with the continuous stretch of time maintained across them. Even if it seems natural nowadays to represent time with a line, its extensive use in various models results from many different traditions. In our model, these influences are mainly the following: history charts, the construction of the real number line based on Dedekind and Cantor’s work, and the use of parametric curves with time as the general parameter. We will discuss these three influences briefly.

For most of the Middle Ages, time was mainly represented on timetables. Around the beginning of the 19th century, time flux started to be embedded within natural metaphors like lightning and rivers (5). These two examples are important since they allow the time frame to branch out simultaneously. Various time lines could be traced out of single elements. In mathematical terms, these structures are equivalent to oriented graphs, and more precisely to oriented trees, since cycles do not exist in these structures.

For its part, the concept of continuity led to multiple complications and was not well defined until the topology of the real line was properly described. We owe much to the work of Weirstrass, Dedekind and Cantor for this definition and understanding. This dense continuous line of values serves as well in defining parametric curves, curves based on a continuous parameter, usually the time. These curves can be used to represent various types of motion, for instance, the movement of particles in space.

The first trick to make use of mathematical models to represent time frames is to base diegetic time on parametric curves. As a building strategy, this enables various constructions of diegetic time structures. First of all, it allows the concatenation of many line segments as it happens in the time charts discussed above, therefore constructing structures like tree graphs. A simple example of a narrative based on that idea is Griffith’s movie Intolerance, in which different independent stories flow separately (6). Examples can also be found in the work of artists like Chris Ware or Jason Shiga, or in the hypercomics based on McCloud’s infinite canvas such as Daniel Merlin Goodrey’s work (7).

The concatenation of various time segments allows the construction of multi-cyclic time structures as well. This kind of structure is not in itself a novelty; in some mythologies, cyclic time is accepted as the general topology of time frames, and some even make use of many intricate cyclic times as in the Tzolkin and Vedic time constructions. In extending parametric curves into graph theoretical frameworks, we can obtain infinity of cyclic graphs where cycles may be intersecting or independent. This application naturally allows a wide variety of already proven theorems to apply to narratology. For instance, observing the underlying structure of a graph might allow us to determine the number of possible cycles, each of them being a possible reading path.

Because cycles are naturally embedded on a flat surface, some considerations about the implied spaces become important. The Jordan curve theorem states that any simple closed curve separates space in exactly two sections, the interior and exterior of the closed curve, or equivalently, of a cycle. As a result, constructing a cyclical story leads to the creation of these inside and outside spaces that might be used later for a semantic purpose.

In Reinventing Comics, Scott McCloud coined the term infinite canvas to represent the possibility of extending comics infinitely in all directions of a plane. His website specifies that it provides the perfect conditions for a type of comic he names hypercomics. Looking back at mathematical definitions of planes and surfaces, it seems clear that various types of infinities are involved in the notion of an extended version of the infinite canvas.

First, in terms of the continuum defined by Cantor, a plane is dense since it follows from the product of two continuous axes. This implies that infinite zooms are possible at any point on a plane, and as such, on any compact surface (8). To understand this implication, we have to look at a category of curves called space-filling curves, or Peano curves after Giuseppe Peano who first proposed such an example. Space-filling curves are iterated curves that, at their limits, fill a whole part of the plane. (Figure 2) Indeed, many other examples have been provided by other mathematicians in order to provide extra characteristics, as for instance Moore’s curve that is a closed space-filling curve. The density of the plane implies that the breakdown of iterated narrative into infinitely smaller scales is possible. This density leads to possible infinite zoom, fractal-like, construction as found in Marc-Antoine Mathieu’s first and third tomes of his Julius Corentin Acquefaques serie.

Figure 2: A Space-filling curve

The second way in which the canvas is infinite arises first when we allow the plane to be infinite in all directions. In mathematical term, it means the surface is not compact because it would be impossible to cover a plane with a finite amount of bounded sets. From a representative point of view it means it could never be entirely seen, in particular, not in a finite amount of images. In this case, this is why McCloud claims that the infinite canvas naturally supports digital comics. Although true, we suggest the infinite canvas presents even more value with the infinite amount of shapes we can allow the canvas to have.

Also, the canvas does not have to be contained simply in the plane. For instance, as suggested visually in McCloud (9) and in the diegetic world of French author Marc-Antoine Mathieu (10), comics could be presented on spheres (11). The use of different properties of the sphere can lead to a variety of narratological compositions in link with the intrinsic properties of the sphere: the presence of loxodromes, the covering groups different from the wallpaper groups and so on.

In addition, as proposed by many artists, from Alan Moore in Promethea to Jim Woodring in a side project (12), passing by members of the OuBaPo collective, the use of a Möbius strip as the canvas leads to interesting constructions. These can be used as objects existing within the diegetic world as in Moore, or directly as a support inducing a specific topology within the diegesis as in Woodring’s case.

Indeed, any sculptural surface may offer interesting options for narrations and a complete survey of such an approach should be done. In our case, we would like to focus on surfaces that have been studied from a mathematical point of view. The reason is that many theorems shed light on hidden properties that enable us to imagine interesting narratives and limiting ourselves to a sculptural point of view would have prevent us from finding and using these properties. The variety of surfaces is infinite and a list of inspiring surfaces can be found in the fields of differential geometry, differential topology, and knot theory. For instance, as a result of their definition, minimal surfaces seem pleasing to embed stories. It involves the possibility of working on some surfaces of infinite area spreading in different axes, as with Sherk’s surface and Costa’s surface (Figure 3), or even with self-intersecting sections, as in the case of Henneberg’s surface.

NS Figure 3

Figure 3: Costa’s surface. Source:

Compact surfaces also lead to interesting possibilities. In topology, the study of surfaces is bound to the analysis of characteristics which are preserved when surfaces are torn and stretched. Such invariants are coined topological invariants. An example is the number of holes present in the surface. For instance, the sphere contains no holes, but the torus has one; therefore the two surfaces are fundamentally different. On the other hand, the sphere and the cube are classified as the same surface since they both have no holes. This argument leads to a classification for compact surfaces depending on the number of holes involved. As it turns out, all compact orientable surfaces are torus of genus n, meaning a torus with n holes, for n a positive integer These will become useful in the next section.

Orientability is another characteristic that helps refining surface classification. Orientable roughly means they possess an inside and an outside and it is impossible to move smoothly from the inside to the outside. For instance, it is impossible to move on the sphere and end up being inside the sphere without piercing a hole. The Möbius trip is a simple example of non-orientable surface since by smoothly moving along the surface it is possible to end up on the other side of the departure point. In constructing sculptures, non-orientable surfaces lead to some difficulties. For instance, the Klein bottle invented by German mathematician Felix Klein in 1882 cannot be embedded in our three-dimensional world without self-intersecting (Video); it is only possible in four or more dimensions. This makes the visualisation of these surfaces more difficult, but a general classification is still possible.

The class of infinite compact non-orientable surfaces are all equivalent to spheres with a certain number of Möbius strips glued to holes in them (the edge of the Möbius strip is equivalent to a circle, therefore when cutting a circular hole on the sphere it becomes possible to glue the strip’s edge along the edge of the hole). The more complex the non-orientable surface, the more dimensions one needs to avoid self-intersections. Even if it seems very hard to work on these surfaces as a possible infinite canvas, shortcuts exist. There is a way to represent any compact surface, orientable or not, with their fundamental polygons which can easily be represented on the plane. These polygons are simplified maps for these surfaces; to obtain a surface, it suffices to fold its edges by respecting so pair connections or edge directions. Indeed, the writing on non-orientable compact surfaces that aren’t embeddable in three dimensions might be done in a virtual environment, or directly on the equivalent fundamental polygon. The figure below shows the construction of the Klein bottle from its fundamental polygon. (Figure 5)

NS Figure 5

Figure 5: Klein botte’sfundamental polygon.

As a result, the infinite canvas is infinite as well in the number of dimensions a non-orientable surface holding a story could ‘’naturally’’ exist without self-intersecting. Indeed, the use of computers can be a handy tool in constructing such narratives.

The next question we need to address is the following: why would we want to work with parametric curves on this collection of surfaces? The answer comes from the field of topological graph theory. The Polish mathematician Kasimierz Kuratowski and the Russian mathematician Lev Pontryagin proved independently the necessary and sufficient conditions to be able to embed a graph on the plane without crossing edges. It states a graph is planar if and only if it does not contain the subgraphs K₃,₃ or K₅. (Figure 6)

NS Figure 6

Figure 6: The obstruction set for the plane

In constructing comics on parametric curves based on graphs containing one of these would inevitably leads to edges crossovers. Indeed, such overlapping can always be dealt with, as in the case of Chris Ware diagram comics, but the point here is to explore the possibilities provided by restricting ourselves to planar embeddings. To give a pragmatic application, we know the two aforementioned graphs can be drawn on the torus or the Möbius strip without having edge overlapping, it means they have planar embedding for the torus. It follows that it is possible to draw planar stories on such graphs if we use the torus as the canvas. (Figure 7)

NS Figure 7

Figure 7:Toroidal embedding of K₅

The study of topological graph theory led to the discovery that different surfaces don’t share the same obstruction groups, i.e. the set of graph making the planar embedding impossible, such as K₃,₃, and the K₅, in the case of the plane. We know for instance that the Möbius plane has 35 such graphs (Archdeacon, 1980), and the Torus has more than 16 000! On the other hand every finite graph can find a planar embedding in some compact orientable surfaces with at least n holes for a certain n values, and same holds for non-orientable surfaces and a certain number of Möbius strip glued to the sphere.

Another result is that the presence of cycles leads to different amount of bounded spaces. In other words, if the Jordan curve theorem holds for the sphere, it is not true in general. Already in the case of the torus, construction of longitudinal and transversal cycles leads to a single bounded space; it does not hold for torus with n holes neither.

The construction of narrative on these extended infinite canvases, such as non-orientable surfaces, minimal surfaces and so on, is what we call narrative sculptures because their structures are deeply linked to the surfaceskno hosting them. The main goal in constructing narrative sculptures is the research for new narratological challenges. An optimised use of this involves considerations of the following distinctive properties of narrative sculptures: the possible use of complex multi-cyclic time curve constructions, the use of different spaces the cycles are bounding and the possible semantical implications in our world, or in a digital equivalent to it.

We present two examples, expressing challenges brought by simple constructions. The K₅ graph has a planar embedding on the torus. . It can as well be constructed by the union of two cycles by taking a cycle being the outside pentagon and the second one being the star shape in the middle. We could construct a highly ‘’twisted’’ story as following. Through the double cycles, we could describe the interactions of two individuals at desynchronised moments of their life cycles. The complications and self-containing elements of the story could then be reinforced by presenting it on a trefoil knot, which is simply a torus but embedded differently in three dimensions. (Figure 8) Of course, many other options since the torus can find multiple embedding in four dimensions that could lead to interesting narrative sculptures (13).

NS Figure 8

Figure 8: Trefoil knot by Jos Leys. Source:

The graph K₅ also possesses a planar embedding on the Klein bottle. It would then possible to construct a complex science-fiction comic. First the multiple desynchronised elements present on the two cycles would bring an intricate time structure. Then, different bounded area could hold their proper images and symbolism related to the story. Finally, the Klein bottle canvas leads to a hyper-fictional statement since the canvas itself could not be properly constructed in our world. The same holds for the infinite collection of surfaces that aren’t embeddable in three dimensions without self-intersecting. (14)

In conclusion, we have seen that by merging various paradigms and concepts from narrative theory, the infinite canvas and mathematical knowledge about surfaces and graphs, we can define highly complex narrative structures that we coined narrative sculptures. Such constructions not only leads to new narratological and artistic challenges, but it can bring new questioning about the way we first, understand stories, and secondly how we teach narratology. In the first case, experiments in cognition could help understanding the effect of dealing with highly complex but still visually clear narratives in our learning process. In the latter case, it evokes the possibility of including some mathematical notions in teaching narratology or even information design.

Félix Lambert


1- Ryan, p. 150-151

2- McCloud, 2000.

3-An example can be found at

4-Gravett, p. 136-137

5-Rosenberg and Grafton, p.143-149.

6-Eisenstein, p. 397


8-It should simply be understood in this case of surfaces of finite area.

9-McCloud, 1993

10-Mathieu, 2004

11-McCloud also suggest writing on the cube in Reinventing Comics.


13-Séquin, 2012



Ball, David M. et Martha B. Kuhlman Éditeurs. 2010. The Comics of Chris Ware: Drawing Is a Way of         Thinking. Mississippi: University Press of Mississippi.

Barr, Stephen. 1989. Experiments in Topology. New York: Dover Publications.

Bondy, J.A. et U.S.R. Murty. 2008. Graph theory. New York: Springer.

Cates, Isaac. 2010. ‘’Comics and the Grammar of Diagrams’’. In The Comics of Chris Ware: Drawing Is      a Way of Thinking. Edited by David M. Ball and Martha B. Kuhlman. Mississippi:    University Press               of Mississippi.

Delahaye, Jean-Paul. 2008. ‘’Une propriété cachée des graphes’’. Pour la Science, n˚366 (Avril), p. 92-97.

Di Liddo, Annalisa. 2009. Alan Moore: Comics as Performance, Fiction as Scalpel. Mississippi:      University Press of Mississippi/ Jackson.

Falcón, Maricela Ayala. 2012. ‘’Tiempos mesoamericanos, calendarios mayas’’. Artes de México, vol.       107, El Arte del Tiempo Maya, p. 18-25.

Gagarin, A., W. Myrvold et J. Chambers. 2005. ‘’Forbidden minors and subdivisions for toroidal graphs   witn no K₃,₃’s’’. Dans Electric Notes in Discrete Mathematics Vol. 22, p. 151-156.

Genette, Gérard. 1972. Figures III. Coll. Poétiques. Paris: Éditions du Seuil, 1972.

Glover, Henry H., John P. Huneke and Chin San Wang. 1979. ‘’103 Graphs That Are Irreducible for the     Projective Plane’’. Journal of Combinatorial Theory, Series B 27, p.332-370.

Gravett, Paul. 2013. Comics Art. New Heaven: York University Press.

Gross, J.L. and T.W. Tucker. [1987] 2012. Topological graph theory. New York: Dover Publications.

Groupe Acme. 2011. L’Association: Une utopie éditoriale et esthétique. Paris : Les Édtions Nouvelles.

Kuratowski, Casimir. 1930. ‘’Sur le problème des courbes gauches en topologie’’. Fundamenta Matematicae, Vol. 15, p. 272-283.

Lickorish, W.B. Raymond. 1997. An Introduction to Knot Theory. New-York: Springer.

Mathieu, Marc-Antoine. 1991a. Julius Coretin Acquefaques, prisonnier des rêves: L’origine. Paris: Éditions                 Delcourt.

———— 1991b. Julius Coretin Acquefaques, prisonnier des rêves: La qu…. Paris: Éditions             Delcourt.

———— 1993. Julius Coretin Acquefaques, prisonnier des rêves: Le processus. Paris: Éditions     Delcourt.

———— 1995. Julius Coretin Acquefaques, prisonnier des rêves: Le début de la fin. Paris: Éditions            Delcourt.

———— 2004. Julius Coretin Acquefaques, prisonnier des rêves: La 2,333e dimension. Paris: Éditions      Delcourt.

———— 2013. Julius Coretin Acquefaques, prisonnier des rêves: Le décalage. Paris: Éditions Delcourt.

McCloud, Scott. 1993. Understanding Comics. New York: HarperPerrenial.

———— 2000. Reinventing Comics. New York: Paradox Press.

McHale, Brian. 1987. Postmodernist Fiction. New York: Methuen.

Munkres, James R. 2000. Topology. 2nd Ed. New Jersey: Prentice Hall.

Pickover, Clifford. 2006. The Möbius Strip : Dr. August Möbius’s Marvelous Band in Mathematics, Games,                 Litterature, Art, Technology, and Cosmology. New York: Thunder’s Mouth.

Rosenberg, David and Anthony Grafton. 2010. Cartographies of Time: A History of the Timeline. New      York: Princeton Architectural Press.

Ryan, Marie-Laure. 1991. Possible Worlds, Artificial Intelligence, and Narrative Theory. Indianapolis:       University Bloomington & Indianapolis Press.

Séquin, Carlo. 2012. ‘’Topological Tori as Abstract Art’’. Journal of Mathematics and the Arts, Vol. 6, Nu. 4, December, p. 191-209.

Stillwell, John. 1992. Geometry of Surfaces. New York: Springer-Verlag.

Termes, Dick. 1994. ‘’The Geometries behind my Spherical Paintings’’. In The Visual Mind: Arts and                 Mathematics. Edited by Michele Emmer. Cambridge: MIT Press, p. 243-248.

Ware, Chris. 2000. Jimmy Corrigan: The Smartest Kid on Earth. New York: Pantheon Books.

——— 2003. Quimby the Mouse. Seattle: Fantagraphics Books.

——— 2012. Building Stories. New York: Pantheon Books.



Carruth, Shane (réal.). Primer. 2005. États-Unis: ERBP. DVD. 77 min.

Johnson, Ryan (réal.). Looper. 2012. États-Unis et Chine: Endgame Entertainment. DVD. 119 min.

Jones, Duncan (real.). Source Code. 2011. États-Unis: Vendome Pictures et The Mark Gordon Company.               DVD. 93 min.


Narration et mathématiques: l’utilisation des graphes au cinéma et dans la bande dessinée (Chapitre 4)

Chapitre 4 : Écrire sur différentes surfaces.

Dans ce chapitre, notre modèle sert principalement à l’exploration de nouvelles potentialités du médium de la bande dessinée ou des histoires en images lorsque nous les superposons sur différentes surfaces. La grande rareté des artistes travaillant sur les surfaces que nous étudions explique cette tendance. Nous avons jusqu’ici présenté nos histoires sur une seule et même surface ; le plan. Nous explorons à présent différentes surfaces sur lesquelles nous pouvons inscrire des graphes et par conséquent sur lesquelles nous pouvons écrire des histoires. Nous utiliserons une définition de surface équivalente à celle acceptée en topologie (43). (Munkres, p.225), c’est-à-dire que la surface ressemble localement au plan. Dans notre cas, cela permet simplement d’admettre que nous pouvons partout y dessiner comme nous pouvons dessiner sur un plan dans le but d’y présenter des histoires à l’aide d’images. En topologie, le terme 2-manifold est généralement utilise (44). Une surface peut-être bornée ou non, par exemple la sphère est bornée, mais le plan cartésien ne l’est pas puisqu’il existe au moins une direction vers laquelle elle se prolonge indéfiniment. Notre définition de surface permet entre autres d’avoir des surfaces qui ne peuvent pas s’insérer dans un monde tridimensionnel sans se croiser elle-même. La fameuse bouteille de Klein, proposée par le mathématicien allemand Félix Klein, est construite de la sorte (Barr, p.38). Heureusement, nous pouvons représenter ces surfaces en deux dimensions à l’aide des polygones fondamentaux de ces surfaces (45). Nous construisons ces polygones de sorte qu’en donnant à chaque arête une orientation et en joignant deux à deux ces arêtes nous pouvons théoriquement construire ces surfaces indépendamment du nombre de dimensions requises pour éviter sa propre intersection. Nous reviendrons sur ces détails.

Figure 1

La première extension en trois dimensions apparaît naturellement avec la juxtaposition de plans dans l’espace. En 2013, l’artiste Daniel Merlin Goodbrey exposa son histoire Black Hats in Hell sur plusieurs murs (Gravett, p.136-137) (Figure 1), œuvre qui s’apparente en ce sens au projet de la plus grande bande dessinée au monde créée en 2012 par 11 écrivains et 111 dessinateurs de l’école de dessin Émile Cohl à Lyon (46). Dans ces deux œuvres, le canevas reste localement planaire, mais l’ensemble du canevas est une composition de différents plans, en l’occurrence de murs ou de surfaces de lieux publics telles les clôtures. Il existe une panoplie d’autres surfaces tridimensionnelles qui peuvent servir de canevas autre que la juxtaposition de plan.

Figure 2

Figure 2: Termsphere par Dick Termes. Source: site personnel de Termes

Nous débutons avec la sphère puisqu’elle se visualise aisément. L’idée de présenter ces scènes sur une sphère a déjà été utilisée par l’artiste Dick Termes. L’artiste peint des scènes qui seraient perçues de l’intérieur d’une sphère imaginaire entourant un observateur dans un monde diégétique. L’illusion de regard est recréée par les points de fuites qu’il dispose sur cette sphère en imaginant les directions vers lesquelles porte le regard de l’observateur dans la diégèse. Ces scènes imaginées sont ensuite peintes sur l’extérieur d’une sphère. Le résultat, nommé termesphere par l’artiste, est donc une représentation inside-out de cette scène imaginée (Termes, p.243-244). En acceptant la possibilité d’avoir des bandes dessinées en une seule case, nous pouvons considérer les termespheres comme des bandes dessinées  sans cadre, ou dont le cadre est délimité directement par l’espace de la sphère. (Figure 2) Cela est une conséquence de l’aspect borné de la sphère. Nous pouvons imaginer une série de bandes dessinées à même une sphère. Scott McCloud a déjà entrevu cette idée, mais sans toutefois en offrir des exemples complets. Dans Understanding Comics, il présente des sphères sur lesquelles des cases de bande dessinée se trouvent; soit des portraits de personnages importants de l’histoire du médium y figurent, soit il y résume les concepts importants de son ouvrage (McCloud 1993, p. 4 et 214). (Figure 3)

Figure 3

Figure 3: McCloud, Scott. 1993. Understanding Comics. New York : Harper Perrenial. © 1993 Scott McCloud

McCloud se sert de cette image pour représenter le monde de la bande dessinée, nous constatons tout de même que l’idée d’y dessiner des histoires et réalisable. Marc-Anthoine Mathieu pousse un peu plus loin cette hypothèse en laissant comprendre qu’en fait, la bande dessinée qui se lit dans La 2,333e dimension de la série des Julius Corentin Acquefaques existe en fait sur une sphère et qu’il en est de même pour les autres ouvrages de bande dessinée comme celui de La Mouche de Lewis Trondheim (Mathieu 2004, p.33-35). Ceci consiste en une première exploration d’une histoire en plusieurs cases utilisant la sphère comme support. Mathieu n’insiste pas sur la justification de l’usage de ce support pas plus qu’il fait un usage propre de la géométrie et de la topologie de la sphère, ce à quoi nous remédions dans les prochains paragraphes. (Figure 4)

Figure 4

Figure 4: Marc-Antoine Mathieu, Julius Corentin Acquefaques, prisonnier des rèves : La 2,333e dimension. ©2004 Guy Delcourt productions

Nous pouvons représenter une sphère centrée à l’origine de l’espace euclidien à trois dimensions par l’équation à trois variables x²+y²+z²=r² pour r un rayon donné (Pressley, p.61). L’expression de la sphère en une équation a permis nombre d’explorations. Notamment, les mathématiciens et cartographes ont travaillé sur plusieurs relations bijectives entre le plan et la sphère, c’est-à-dire sur ces méthodes de projection de la sphère vers le plan et vice versa. La projection entre les deux surfaces peut conserver ou modifier certaines caractéristiques. Si deux projections sont équivalentes, c’est que les aires sont conservées alors qu’elle est dite isométrique si les distances sont conservées (Pressley, p.106-121). Euler a démontré qu’il n’existe pas de projection isométrique entre la sphère et le plan (Pressley, p.234). Finalement, si les angles d’intersection des courbes sont conservés, nous disons que la projection est conforme. Une projection très utilisée et probablement connue depuis l’antiquité se nomme la projection stéréographique (Snyder, p.154). La bijection s’obtient en situant le Pôle Sud d’une sphère sur un plan et en traçant des rayons à partir du Pôle Nord qui se dirigent vers le plan. Chaque rayon croise la sphère en un point et poursuit vers le la plan jusqu’au point où il est projeté (Gamelin, p.11-13). (Figure 5)

Figure 5

Figure 5: La Projection Stéréographique Source :

La projection stéréographique est une transformation conforme, c’est-à-dire qu’elle conserve l’angle d’intersection entre deux courbes d’une surface à l’autre. Cette propriété est d’ailleurs celle qui a permis à divers photographes d’obtenir des images représentant l’espace tridimensionnel de manières novatrices et cohérentes (Lambert, p.44).

Dans notre cas, étudions comment la projection d’une surface vers une autre permet de jouer avec la structure de l’histoire. Dans la projection stéréographique, le point à l’infini dans toutes les directions est projeté sur le Pôle Nord de la sphère. Nous pouvons à l’aide de cette propriété donner un deuxième sens à un graphe en étoile. Reprenons l’exemple de l’histoire en étoile dans laquelle les personnages s’éloignent d’un évènement dramatique. En projetant ce graphe vers la sphère, les branches vont à la fois s’éloigner de l’incident, au Pôle Sud, mais les arêtes vont également toutes se diriger vers le Pôle Nord. Alors que la version de cette histoire sur le plan indique que les personnages se quittent à tout jamais, la version sur la sphère laisse sous-entendre qu’ils vont se recroiser malgré tout. Cet exemple démontre l’importance du choix de la surface sur laquelle une histoire en images est présentée.

Figure 6

Figure 6:Spirales sphériques (1958) par Escher, xylogravure, diamètre 32 cm.

La particularité d’être conforme permet également de travailler avec les spirales telles que vues précédemment. Pour ce faire, nous devons définir un type de courbes sphériques nommées loxodromies. Celles-ci croisent les méridiens avec un angle constant (Pressley, p.83). Si cet angle diffère de 90 degrés, nous obtenons une double spirale sur la sphère. En effet, la courbe s’enroule indéfiniment autour de chaque Pôle sans jamais les atteindre. Maurelius Escher avait remarqué la beauté de ces courbes et les œuvres Surface sphérique avec poissons et Spirales sphériques toutes deux datant de 1958 en font l’usage (Locher, p.231-232). (Figure 6) Pour un usage en bande dessinée, plusieurs options s’offrent à nous. Soulignons premièrement que ces courbes deviennent également des spirales, lorsque projetées sur le plan. Si nous prenons une loxodromie partant du Pôle Sud au Pôle Nord, sa projection sur le plan résulte en une spirale qui s’enroule autour de l’origine et qui diverge vers l’infini. (Figure 7)

Figure 7

Figure 7: spirales et loxodromies. Source :

En appliquant une rotation à cette sphère avant d’appliquer la projection stéréographique nous pouvons construire des spirales à deux points de convergences sur le plan tel qu’étudié au deuxième chapitre. En tournant légèrement la sphère, nous déplaçons le Pôle Nord; or, la projection stéréographique s’effectue malgré tout à partir du point le plus élevé de la sphère. Il en résulte que le Pôle Nord autour duquel s’enroule la loxodromie n’est plus projeté vers le point à l’infini. Par conséquent, cette section de la spirale devient également visible sur le plan (Mumford, Series et Wright, p.62-67) comme nous pouvons l’observer dans la photographie de Paul Nylander. (Figure 8).

Figure 8

Figure 8: Double spiral by Paul Nylander. © Paul Nylander

L’artiste Huang Yong Ping, présenta une structure de la sorte pour son œuvre Carte du Monde. L’artiste utilise un dallage de la sphère par une loxodromie qu’il déroule ensuite pour en offrir une version strictement planaire. Sur cette loxodromie déroulée, il situe une panoplie de désastres futurs aux endroits où ils auront théoriquement lieu sur le globe (Rosenberg et Grafton, p.216). Par la relation des désastres avec leurs lieux d’occurrences, cette œuvre s’articule comme récit-carte sur une loxodromie lui-même dallage de la carte. (Figure 9)

Figure 10

Figure 9: Carte du Monde par Huang Yong Ping. Rosenberg, David and Anthony Grafton. 2010. Cartographies of Time: A History of the Timeline. New York: Princeton Architectural Press.

Nous constatons que plusieurs théorèmes valables pour le plan restent également valables pour la sphère. Le théorème de Jordan et le théorème de Kuratowski restent vrais lorsque leur énoncé concerne la sphère plutôt que le plan (Bondy, p.247). Dans le cas du théorème de Jordan, son application sur la sphère amène tout de même un élément nouveau. Sur le plan, une courbe simple fermée sépare le plan entre l’intérieur et l’extérieur de la sphère. L’extérieur de la courbe est alors un espace infini, non borné. À l’opposé, le principe d’intérieur et d’extérieur peut perdre son sens sur la sphère. Tout d’abord, les deux espaces disjoints obtenus en traçant une courbe fermée sur la sphère sont tous les deux bornés. De plus, les grands cercles de la sphère séparent la sphère en deux espaces équivalents, c’est-à-dire les cercles de grandeur maximale de la sphère, dont l’équateur est un bon exemple, séparent la sphère en deux espaces d’aires égales. D’un point de vue topologique, nous pouvons considérer que la projection stéréographique avec l’ajout du point à l’infini qu’est le Pôle Nord est un exemple de compactification d’une surface (Munkres, p.185). La compactification permet de passer à une surface d’aire infinie à celle d’une aire finie.

Ces courbes simples fermées peuvent alors servir à présenter des histoires au sens vaguement différent. Par exemple, prenons le cas d’une histoire cyclique sur le plan où un personnage est pris sur un cercle à l’intérieur du cercle se trouve le paradis et à l’extérieur duquel se trouve l’enfer. L’effet d’avoir un espace infini relié à l’enfer contrairement à un petit espace restreint pour le paradis dirige la lecture du lecteur. Il est difficile et contraignant de se garder une place au paradis alors que tout écart de conduite mène vers les flammes de l’enfer qui emprisonnent la vie du personnage. En représentant cette même histoire sur un grand cercle de la sphère, il est possible de balancer cette lecture puisque les deux aires associées au paradis et à l’enfer seront équivalents.

La construction d’histoires sur la sphère génère des structures difficilement représentables sur le plan. Par exemple, prenons un cube, doublons chacune de ses arêtes et déformons le tout pour obtenir une sphère. (Figure 10) Nous obtenons sur la sphère un graphe équivalent à six cercles opposés en paires comme le sont les faces du cube. Cette construction permet d’opposer les cycles antipodaux d’une manière qui serait impossible sur le plan. La construction d’histoire sur les sculptures narratives s’avère donc un outil qui peut apporter des informations supplémentaires à la narration.

Figure 11

Figure 10: La sphère et le cube sont topologiquement équivalents. Source :

Tout comme dans le cas du plan, nous pouvons envisager le recouvrement de la sphère par des cases, tout comme dans la présentation de McCloud, ou par des histoires cycliques. L’analyse des recouvrements de la sphère devient rapidement plus complexe que celle de l’analyse du plan, mais puisque ces recouvrements doivent se faire à l’aide d’un nombre fini de figures isométriques, cela en facilite l’étude (Gao, Shi et Yan, p.2). Sans résumer l’ensemble des résultats et des différentes classifications existantes, nous soulignons quelques particularités. En premier lieu, la géométrie sur la sphère est un exemple de géométrie non euclidienne. Cela implique que la somme des angles d’un triangle n’est pas obligatoirement de 180 degrés, en fait cette somme est supérieure à 180 degrés (Bonola, p.136). Cette caractéristique nous permet de construire des dallages réguliers de la sphère qui seraient impossibles sur le plan, soit parce que les figures ne peuvent pas y exister, soit par ce que ces figures ne permettent pas un dallage du plan. Imaginons un dallage de la sphère à l’aide de triangles isocèles possédant deux angles droits. Évidemment, de tels triangles s’avèrent impossibles sur le plan. Sur la sphère il est possible de retrouver ces triangles si nous prenons un sommet comme étant le Pôle Nord et les deux autres points sur l’équateur, cela résulte de la compactification du plan à l’aide du point à l’infini. Si nous appliquons le même principe à partir du Pôle sud, nous trouvons que le résultat sur le plan après la projection stéréographique est un triangle du point de vue topologique, mais pas du point de vue géométrique puisque l’un de ses côtés est un arc de cercle. Dans les deux cas, le triangle sur la sphère est isocèle puisque la distance sur la sphère de l’équateur aux Pôles est constante et il est rectangle puisque le croisement des méridiens et de l’équateur est perpendiculaire. Nous construisons le dallage en deux temps. Premièrement par juxtaposition de ce triangle dans un hémisphère jusqu’à ce que celui-ci soit couvert et ensuite nous procédons de même pour le second hemisphere (47). (Figure 11)

Figure 12

Figure 11 : Pavage de la sphère. Source :

La géométrie non euclidienne de la sphère permet donc des pavages réguliers impossibles sur le plan. Des pentagones réguliers peuvent daller la sphère, il suffit de regarder de dodécaèdre pour s’en convaincre. (Figure 12) La construction d’un tel dallage sur le plan demeure infaisable. Nous avons vu également qu’il est possible de recouvrir le plan à partir d’histoires en spirales. Si une seule spirale suffit pour le plan, il en est de même pour la sphère. À la différence du plan, nous pouvons recouvrir la sphère à l’aide d’un nombre arbitraire de spirales disjointes : nous pouvons tracer un nombre quelconque de loxodromies parallèles qui s’enroulent aux deux pôles sans jamais se croiser.

Figure 13

Figure 12: Pavage d ela sphère par des pentagones. Source :

Le théorème de Kuratowski tient aussi pour la sphère, c’est-à-dire qu’un graphe sera planaire sur la sphère si et seulement s’il ne contient pas les graphes complets bipartis sur trois sommets ou le graphe complet sur cinq sommets, K₃,₃ et K₅. Tout graphe planaire sur le plan l’est aussi sur la sphère et vice versa (Bondy, p.247). L’avantage de l’utilisation de la sphère peut encore être celui de l’utilisation de l’espace tridimensionnel.

Considérons la sphère dans une perspective topologique. Du point de vue de cette théorie, la forme exacte des objets n’importe pas et si une forme peut être obtenue à partir d’une autre par le biais d’étirements, écrasements et torsions, nous disons que ces figures sont homéomorphes. Les opérations proscrites sur ces objets sont les coupures, collages et perçages. Par conséquent, une sphère est homéomorphe à une infinité de figures tels le cube, l’ellipsoïde et même comme souligné à la blague par certains, à un lapin (48). En fait, toute surface bornée sans trou sera homéomorphe à la sphère. La topologie traite des invariants topologiques, c’est-à-dire des caractéristiques partagées par tous les objets homéomorphes entre eux (Barr, p.5). La caractéristique d’Euler est l’un de ces invariants topologiques qui relie entre eux le nombre de faces, de sommets et d’arêtes et d’un graphe planaire sur une surface. Initialement, cette relation entre les faces, les arêtes et les sommets d’un graphe fut décrite seulement pour décrire les polyèdres (Barr, p.10), mais il se trouve que cette formule s’applique à tout graphe planaire connecté (Bondy, p.259). Antoine-Jean Lhuilier en généralisa la forme pour en donner une version qui s’applique à toute surface bornée (Pickover, p.67). L’utilité d’une telle relation est de permettre de vérifier si un graphe est planaire puisqu’un graphe qui ne respecte pas cette caractéristique ne peut être planaire. Nous pouvons de cette manière démontrer que le graphe biparti complet sur deux ensembles de trois sommets ne peut être planaire (Bondy, p.260). Trivialement, nous constatons que tout graphe planaire sur la sphère l’est également sur toute surface homéomorphe à celle-ci.

Figure 14

Figure 13: Page couverture de The Portable Frank par Jim Woodring. © 2008 Jim Woodring

Les exemples de bande dessinée produite sur des surfaces homéomorphes à la sphère semblent pratiquement inexistants. Le seul exemple qui s’en rapproche apparaît, quelque peu comme la sphère de McCloud, en pavage d’un dragon par des cases de bandes dessinées par Jim Woodring sur la couverture de son ouvrage The Portable Frank (2008). (Figure 13) La créature en question n’apparaît pas dans l’ouvrage en soi. Elle n’est pas sans remémorer la gravure The Remonstrant Snake présentée par Kunzle qui présente sur un grand serpent les conspirateurs de la fraternité remonstrante (Kunzle, p.58-60). (Figure 14)

Figure 15

Figure 14: The Remonstrant Snake.  Tiré de l’ouvrage de KunzleFigure 14: The Remonstrant Snake.  Tiré de l’ouvrage de Kunzle

Une autre surface populaire qui commence à attirer l’attention des artistes est le ruban de Möbius. Le ruban existe depuis l’Antiquité ; le philosophe Lao Tseu l’avait déjà décrit pour en faire une représentation de l’infini (Cazenave, p.731). Le ruban est généralement nommé d’après le mathématicien allemand August Ferdinand Möbius qui l’étudia au 19e siècle. Un autre mathématicien du nom de Johann Benedict Listing en fit la découverte 1958, mais il approfondit moins ses recherches que Möbius ce qui explique son appellation (Pickover, p.28). Nous pouvons construire le ruban de Möbius à partir d’un simple rectangle. Il suffit de tourner l’une de ses extrémités de 180 degrés et de le coller à l’autre extrémité du rectangle (Barr, p.23-25). (Figure 15)

Figure 16

Figure 15 : Le ruban de Moebius. Source :

La surface résultante est bornée et ne possède qu’un seul côté. Effectivement, en traçant une ligne le long du rectangle nous passons sur le devant et l’arrière de la bande. Pour cette raison nous disons que cette surface est non-orientable (Pressley, p.76-77) et nous verrons plus loin qu’il existe en faire une infinité de surface de la sorte. En suivant la bordure du rectangle nous trouvons également que cette surface ne possède qu’une arrête, cette arrête consiste en le cadre de cette surface, cadre qui la rend bornée (Barr, p.24). Il possède une caractéristique d’Euler de zéro.

Figure 17

Figure 16: M.C. Escher, Ruban de Moebius II, 1963, xylogrphie, 45×20 cm

Le ruban de Möbius est probablement l’une des figures mathématiques les plus connues et son utilisation passe de la prestidigitation à la physique (Gardner 1956, p.70-71). Dans son livre The Möbius Strip, Clifford Pickover démontre l’ampleur de cette popularité autant en ingénierie, qu’en physique et dans les arts (2006, p.xvii-xix). Parmi les nombreux artistes qui se sont intéressés à cette surface, le nom d’Escher apparaît encore. Plusieurs de ses gravures représentent d’une manière ou d’une autre un ruban de Möbius ou un espace inspiré par celui-ci (Locher, p.212, 248 et 260) (Figure 16). Le ruban a aussi motivé la construction de nombreuses sculptures par Max Bill, Keizo Ushio, Bruce White, Enrique Carbajal G. Sebastián, et plusieurs autres (Friedman 2007) (Luecking 2007) (Carbajal 1975) (Figure 17). Si l’utilisation première de Lao Tseu en était pour représenter l’éternité, ce mandat s’est depuis élargi ; «It has become a metaphor for change, strangeness, looping, and rejunevation» (Pickover, p.xviii).

Figure 18

Figure 17: Ruban de Moebius par Max Bill

Son utilisation dans la construction d’histoires apparaît également en littérature et plusieurs structures d’histoires cycliques sont considérées comme étant des rubans de Möbius. Pickover présente une panoplie d’œuvres littéraires reliées au ruban de Möbius (Pickover, p.179-187). Certaines, comme No Sided Professor de Martin Gardner ou The Wall of Darkness d’Arthur C. Clark, font apparaître le ruban comme objets dans la diégèse (Pickover, p.174-175). D’autres, telles It’s a Wonderfull Life de Frank Capra ou À la recherche du temps perdu de Marcel Proust, présentent des boucles qui motivent l’auteur à les comparer au fameux ruban. Il en va de même pour le film Donnie Darko de Richard Kelly (Pickover, p.179-181). Nous devons préciser que rien n’indique que nous devons analyser ces histoires réellement comme des structures apparentées à des rubans de Möbius. Effectivement, ces histoires sont en fait strictement des histoires circulaires planaires, peu importe la surface sur laquelle nous les considérons. Ces histoires pourraient être également considérées comme étant inscrites sur des cylindres. Finalement, nous pouvons imaginer ces histoires comme étant écrites sur un ruban de Möbius, mais aucune des particularités qui distinguent le ruban de Möbius d’un simple segment de cylindre ne sont mises à profit. Pickckover discute également l’une de ses propres histoires dont il présente le schéma sur un ruban de Möbius (Pickover, p.183).

Figure 19

Figure 18: Killoffer, Morlaque. OuBaPo. Oupus 3. Paris : L’Association, 2000. © Killorffer

Les stratégies propres à la surface du ruban de Möbius apparaissent réellement avec leur utilisation de certains auteurs de bandes dessinées. Afin de bien comprendre ces différentes utilisations, nous allons distinguer deux cas particuliers. Premièrement, le ruban de Möbius peut apparaître comme objet tridimensionnel dans la diégèse. La construction de Killoffer dans le troisième ouvroir de l’OuBaPo s’apparente aux histoires décrites par Pickover puisqu’elle ne sert qu’à présenter les cogitations philosophiques cycliques d’un personnage (OuBaPo 2000, p.6). (Figure 18) Or, l’idée de Killoffer peut être légèrement agrémentée afin d’obtenir un usage propre au ruban de Möbius. Alan Moore en fait une telle utilisation dans le tome trois de sa série Promethea. (Figure 19) Comme le mentionne Di Liddo, Promethea est «a self-reflexive deliberation about the power of narration » (2009, p.87) et l’utilisation du ruban participe clairement dans cette optique. En discutant de l’infini, les personnages de Sophie et Barbara se retrouvent à marcher sur un ruban de Möbius (Di Liddo, p.93). Dans cette construction les différents moments de l’action sont à la fois synchrones et distincts, c’est-à-dire qu’ils ont lieu à la fois au même moment et à des moments séparés. Par exemple, en lisant la planche du point supérieur gauche et en suivant les personnages, le second moment souligne la synchronicité : Sophie mentionne qu’elle entend des bruits sous ses pieds, ce bruit vient en fait du même personnage marchant plus tard et plus loin sur le ruban. De même, à deux reprises les personnages s’aperçoivent au loin sur le ruban à un moment qui est donc à la fois postérieur et synchrone. La synchronicité des éléments de la scène n’est en rien une particularité du ruban, nous pourrions très bien imaginer des personnages qui marchent autour d’un cylindre dans plusieurs moments à la fois distincts et synchrones. Ce qui semble justifier l’utilisation du ruban est la présence d’un cycle de pair avec des moments synchronisés de part et d’autre du ruban, comme il en est le cas lorsque la protagoniste entend ses propres sons sous le ruban. La non-orientabilité du ruban est ici mise au service de la narration. Nous devons noter qu’encore une fois, cette construction pourrait être possible à l’aide d’une sphère ou d’un cylindre.

Figure 20

Figure 19: Alan Moore, J.H. Williams III et Mick Gray. Promethea. © America’s Best Comics

L’utilisation du ruban est alors principalement symbolique. Le tome Le début de la fin de la série des Julius Corentin présente aussi un ruban de Möbius dans sa diégèse (Mathieu 1995, p.11). Cette présence tente d’outrepasser la simple présence physique pour référer également à la structure globale du tome qui possède cette double orientation ; le milieu du livre est le lieu de rencontre de deux sens de lecture qui se lise à un demi-tour de différence. Cette mise en opposition, souligné de surcroît par la dichotomie du noir et blanc qui se complètent dans les deux segments d’histoire, est une référence à une autre utilisation du ruban de Möbius qui apparaît à mi-chemin entre les deux prochains types que nous discutons.

Figure 21

Figure 20: Möbius Comic Strip de Mark Heat. Source: ©Mark Heat

Figure 22

Figure 21: Tom Tomorrow, The Modern World : Moebius Strip Foreign Policy. © 2003 Tom Tomorrow

Le second type d’utilisation apparaît lorsque le ruban de Möbius est extra-diégétique, mais confiné à l’intérieur de la bande dessinée où il apparaît comme support de l’histoire. Comme dans le cas des différentes histoires analysées par Pickover, certaines ne font pas un usage spécifique de ruban de Möbius et auraient pu simplement être représentées sur le plan ou le cylindre. Le support en ruban de Möbius ne fait qu’ajouter un élément esthétique à l’histoire. C’est le cas pour les histoires Möbius Comic Strip de Mark Heat (49), The Modern World : Moebius Strip Foreign Policy de Tom Tomorrow (50) et celui de Brian MacLachlan (51). (Figures 20-21)Dans le premier cas, l’histoire n’est pas circulaire et se termine à la troisième case. Étrangement, cette troisième case apparaît du mauvais côté de la bande, comme si l’histoire sautait soudainement d’un côté à l’autre du ruban. De plus, la bande n’apparaît pas clairement comme celui de Möbius; le titre seulement indique cette propriété. L’histoire de Tom Tomorrow utilise clairement la visualisation d’un ruban de Möbius, mais encore une fois l’histoire semble sauter de côté et  de l’autre du ruban sans explication. Le ruban présente la logique circulaire du président George Bush à propos de sa politique d’invasion de l’Iraq. Cette fois l’histoire est cyclique, mais ne fait pas usage des caractéristiques propres au ruban de Möbius. Encore une fois, l’histoire saute de côté à l’autre du ruban sans explications et nous pouvons en déduire que certaines sections du ruban restent blanches. Finalement, MacLachlan fait également basculer l’histoire de part et d’autre du ruban. (Figure 22)

Figure 23

Figure 22: Ruban de Moebius par MacLachlan. Source : © Brian MacLachlan

Dans les deux derniers cas, les auteurs omettent également un élément en plus de ne pas utiliser la non-orientabilité. Lors de la construction du ruban, lorsque nous tournons une extrémité de 180 degrés nous obtenons que les scènes de chaque côté du ruban sont verticalement inversées. Cela rend la lecture confuse lorsque l’histoire bascule d’un côté à l’autre. Ces auteurs ne semblent pas considérer ce fait.

Figure 23a

Figure 23: Instructions pour le magazine Nick Mag. Source :

Le magazine Nick Mag a dédié un numéro seulement aux bandes dessinées construites sur des rubans de Mobius (52). (Figure 23)Cette fois les histoires sont réellement adaptées à la forme du ruban. Les histoires restent malgré tout de simples histoires cycliques dessinées sur un ruban de Möbius sans faire un usage particulier des caractéristiques propres au ruban Möbius. Il en est de même pour l’histoire de Lécroart offerte à en vœu en 2008 à L’Association (Groupe Acme, p.96-97). (Figure 24)

Figure 24

Figure 24: Lécroart, Ruban de Moebius , Dans Groupe Acme. 2011. L’Association: Une utopie éditoriale et esthétique. Paris : Les Édtions Nouvelles.

Certains auteurs ont fait un usage du ruban de Möbius réellement en lien avec sa non orientabilité. Analysons en premier lieu un exemple apparu dans xzcd nommée Möbius battle. Cette fois, afin d’éviter le retournement des scènes de haut en bas, l’auteur présente les cases dont la lecture se fait perpendiculairement à la bordure. Il utilise la non-orientabilité du ruban en présentant l’histoire sur une surface transparente de sorte que les mêmes scènes sont lues à deux reprises, mais inversées comme dans un miroir (53). (Figure 25)La bande dessinée proposée par Jim Woodring est tout aussi ingénieuse. Dans son histoire, un personnage traverse littéralement le ruban pour se retrouver de l’autre côté, mais par la propriété d’être non orienté il demeure tout de même dans la même histoire et il ne fait que rentrer une fois de plus dans la boucle (54). (Figure 26)

Figure 25

Figure 25: Möbius battle par Randall Munroe. Source:

Figure 26

Figure 26: Ruban de Moebius par Jim Woodring. Source:

En considérant les histoires sous leur forme de graphe planaire, le ruban de Möbius offre de nouvelles options. Par exemple, nous pouvons tracer le graphe complet biparti sur deux groupes de trois points K₃,₃ ou le graphe K₅ sur le ruban de Möbius de manière planaire (Pickover, p.94). (Figure 27 et 28) Il serait donc possible de construire des histoires planaire sur ce graphe si ce graphe est présenté sur le ruban de Möbius.

Figure 27


Figure 27 : Représentation planaire du graphe complet sur cinq sommets sur le ruban de Moebius. Source :

Figure 28

Figure 28: Représentations planaires de K3,3 et K5. Dans  Gross, J.L. and T.W. Tucker.  [1987] 2012. Topological graph theory, p.30. New York: Dover Publications, Inc. © 1987, 2001 par Jonathan Gross et Thomas W. Tucker

Une famille de graphes qu’il est possible de présenter de manière planaire sur le ruban de Möbius sont les échelles de Möbius. Ces graphes sont en fait formés d’un cycle possédant un nombre pair de sommets qui sont reliés par une arête aux sommets exactement opposés à eux. (Figure 29) Si le nombre de sommets est de huit, il porte le nom particulier de graphe de Wagner. Ces graphes sont facilement représentables sur un ruban de Möbius par une simple échelle qui suit le contour du ruban. (Figure 30)

Figure 29


Figure 29: Les échelles de Moebius, Source :

Figure 30

Figure 30: Représentation d’une échelle de Moebius en ruban de Moebius. Source : Wikipedia

En fait, nous pouvons les représenter sur le plan à l’aide d’une seule intersection non planaire (Guy et Harary, p.494-495). L’avantage d’une telle construction est de jumeler deux à deux des éléments d’un cycle. De ce fait nous pouvons construire l’histoire suivante : à chaque moment d’une histoire, un personnage s’imagine comment se rendre dans une situation idéale dans laquelle il se retrouve lui-même plus tard dans l’histoire. Il existe un équivalent au théorème de Kuratowski pour le ruban de Möbius. En 1980, Dan Archdecon identifia les 35 graphes d’obstruction pour le critère de planarité (Gagarin, Myrvold et Chambers, p.152), autrement dit les graphes qui, si présents en tant que mineurs, rendent la planarité impossible (Delahaye avril 2008, p.97).

figure 31

Figure 31: Coloriage et construction du tore. Source : Wikipedia

Une autre surface sur laquelle il est intéressant de présenter une histoire est le tore. Nous pouvons construire le tore en rejoignant les deux paires de côtés d’un rectangle (Figure 31). Encore une fois, certains graphes qui ne sont pas planaires sur le plan le sont sur le tore. (Figure 32-34)

Figure 32

Figure 32 : K3,3 sur le tore.  Dans Pickover, Clifford. 2006. The Möbius Strip : Dr. August Möbius’s Marvelous Band in Mathematics, Games, Litterature, Art, Technology, and Cosmology. New York: Thunder’s Mouth. © 2006 Clifford A. Pickover

Figure 33

Figure 33: K5 et K6  sur le tore. Dans Gross, J.L. and T.W. Tucker.  [1987] 2012. Topological graph theory. New York: Dover Publications, Inc. © 1987, 2001 par Jonathan Gross et Thomas W. Tucker

Figure 34

Figure 34: Le graphe K5 sur le tore Source :

Du point de vue topologique, le tore se distingue de la sphère par la présence d’un trou. Cela implique qu’une boucle ne peut pas obligatoirement être comprimée en un seul point. De plus, le théorème de Jordan ne tient plus pour cette surface. En effet, comme le démontre la figure 35, un cercle qui contient le trou du tore en son centre ne sépare pas la surface en deux espaces, il en de même pour un cercle perpendiculaire à l’axe de rotation du tore (Barr, p.17). D’autres assemblages de courbes sont également intéressant. (Figure 35) L’ensemble d’obstruction du tore lui contient au moins 16 629 mineurs (Gagarin, Myrvold et Chambers, p.152).

Figure 35

Figure 36

Figure 35: Le théorème de Jordan sur le tore. Source :

Par les principes d’étirements propres à la topologie, un tore est équivalent à une sphère avec une poignée. Or, il est possible d’ajouter un nombre arbitraire de poignées et nous obtenons des surfaces équivalentes à des tores avec le même nombre de trous. Cette méthode d’ajout de poignées à la sphère permet de construire l’infinité des surfaces compactes orientables et chacune de ces surfaces possède une caractéristique d’Euler différente. Il en résulte que chacune de ces surfaces permet un ensemble de graphes planaires différents. Inversement, il est possible à partir de n’importe quel graphe de trouver une surface sur lequel il est possible de le superposer de manière planaire en débutant par représenter ce graphe sur la sphère et en ajoutant une poignée à chaque fois qu’un croisement est inévitable (Gross et Tucker, p.25)(Figure 36). Évidemment, il est possible d’effectuer des dallages de chacune de ces surfaces puisqu’il est possible de faire une triangulation de toute surface (Francis et Weeks, p. 394).

Figure 36a


Figure 36: Technique pour éviter les croisements. Dans Gross, J.L. and T.W. Tucker.  [1987] 2012. Topological graph theory. New York: Dover Publications, Inc. © 1987, 2001 par Jonathan Gross et Thomas W. Tucker

Figure 37

Figure 37: Polygone fondamental de la bouteille de Klein. Source : Wikipedia

Il existe toutefois une seconde classe infinie de surfaces bornées, celle des surfaces non orientables comme la bouteille de Klein. Nous pouvons obtenir cette surface à partir du polygone fondamental de la figure 37 en rejoignant les paires de côtés opposés selon l’orientation donnée. Nous ne pouvons pas représenter cette surface en trois dimensions sans éviter un croisement qui n’est pas réellement une intersection de la surface avec elle-même. (Figure 38)

Figure 38

Figure 38: Bouteille de Klein en trois dimensions. Source :

Il existe une infinité de surfaces non orientables que nous pouvons obtenir à partir de la sphère et du ruban de Möbius. Nous avons préalablement mentionné que la bordure du ruban de Moebius est en fait un cercle, pour obtenir la bouteille de Klein nous pouvons y faire un trou circulaire et y coller la bordure circulaire du ruban de Möbius. Nous pouvons obtenir l’infinité des surfaces non orientables en collant un nombre arbitraire de rubans de Möbius sur la sphere (56). (Gross et Tucker, p.120). (Figure 39)

Figure 39

Figure 39: L’ajout d’un ruban de Moebius sur une surface. Dans: Pickover, Clifford. 2006. The Möbius Strip: Dr. August Möbius’s Marvelous Band in Mathematics, Games, Litterature, Art, Technology, and Cosmology. New York: Thunder’s Mouth. © 2006 Clifford A. Pickover

L’avantage des polygones fondamentaux est donc premièrement de pouvoir représenter de manière planaire n’importe quelle surface, aussi complexe soit-elle. Nous pouvons alors reconstruire n’importe quelle histoire à partir d’une sculpture narrative. L’avantage de travailler sur des surfaces non orientables est en fait d’étendre la notion de fiction non plus seulement au contenu de l’histoire, mais également à sa forme. Si de plus nous prenons en compte les espaces intérieurs et extérieurs aux cycles de sorte à la combiner de par la non-orientabilité -comme les deux ‘’côtés’’ du ruban de Möbius sont reliés par la même opposition- certaines histoires ne sont représentables que sur des surfaces qui ne peuvent exister en trois dimensions.

Figure 40

Figure 40: Noeud Trefoil  par Jos Leys (2004). Source :

Tout comme la forme d’une courbe peut influencer sa lecture, la forme de la surface sur laquelle un graphe et son histoire sont représentés peut être lourde de sens. Par exemple, le tore peut simplement prendre la forme d’un beigne ou bien il peut s’imbriquer en trois dimensions pour former le nœud gordien de la surface de la figure 40. Une vaste littérature sur l’effet des formes existe, principalement dans l’histoire et l’analyse de la sculpture. Une autre branche des mathématiques se dédie à la classification de ces surfaces : la théorie des nœuds.

Figure 41


Figure 41: Surface de Costa. Source : Wikipédia

Figure 42

Figure 42: Surface de Scherk. Source : Wikipedia

La liste des surfaces non compactes est également infinie. Nous pouvons également utiliser ces surfaces comme canevas infini dans la construction de sculptures narratives. Certaines permettent des espaces vacants, comme la surface de Costa (57) (Figure 41), d’autres offrent différentes portions de plans dans diverses directions comme la surface de Scherk (58) (Figure 42) et finalement des surfaces peuvent, à la manière de la bouteille de Klein, se croiser elles-mêmes lorsque représentée en trois dimensions. C’est le cas pour les surfaces de Henneberg et d’Enneper (Pressley, p.227 et 214). (Figure 43) Ces surfaces mènent vers de nouveaux défis narratologiques.

Figure 43

Figure 43 : Surface de Henneberg par Dizingof.  Source :

Comme le mentionne Paul Gravett dans Comics Art, en discutant le canevas infini dans sa forme initiale telle que proposée par McCloud; les dimensions de la bande dessinée « could mutate beyond them into stranger, unpredictable configurations, akin to networks, subway systems, flow-charts, maps, atomic structures puzzles or mazes, traversables along multiple trails » (Gravett, p.130) L’utilisation élargie du concept de canevas infini permet de travailler sur une infinité de surfaces ayant toutes des caractéristiques différentes. Encore une fois selon Gravett: « it will always be human imagination that is the inexhaustible, the infinite canvas » (Gravett, p.136). Nous avons vu comment l’utilisation de cycles diffère déjà beaucoup entre le plan, la sphère et le tore. La notion de sculpture narrative permet d’inclure autant les caractéristiques propres à l’histoire, l’arthrologie qu’implique naturellement le médium de la bande dessinée, les affects de la sculpture par l’utilisation de l’espace ainsi que les notions mathématiques principalement issues de la géométrie, de la théorie des graphes et de la topologie. Nous pouvons parfois représenter la surface sur laquelle s’écrit théoriquement l’histoire par une seconde surface ; par exemple, nous avons vu qu’il est possible de représenter de manière planaire la bouteille de Klein même si celle-ci ne prend sa forme réelle qu’en quatre dimensions. Le canevas infini peut par conséquent être infini de trois manières différentes : par la densité du plan qui permet des zooms infinis, par l’utilisation d’une surface non compacte qui permet une expansion infinie et par le nombre infini de dimensions dans laquelle nous pouvons l’imaginer. L’utilisation des sculptures narratives permet d’explorer différentes narrations sous la lumière de ces diverses composantes. Dans ce chapitre, nous avons exploré un petit nombre de surfaces ainsi que quelques propriétés des graphes qui sont en lien avec la surface sur laquelle ils se trouvent afin de démontrer la pertinence de cette approche.


Dans ce mémoire, nous avons étudié les structures temporelles des narrations en les considérant comme sculptures narratives. Pour ce faire, nous avons limité notre recherche à l’analyse du temps de l’histoire tel que défini par Genette et nous avons modélisé des histoires en les considérant comme agencements de courbes paramétrées en graphes. Nous avons ensuite étudié comment la complexité de certaines constructions mène vers l’étude de la surface sur laquelle cette histoire est représentée. Par le fait même, l’étude des surfaces devient naturellement un outil servant la construction de telles structures. Nous avons nommées sculptures narratives la représentation d’histoires en suites d’images sur une surface. Le cas trivial étant le plan, nous avons étudié comment d’autres surfaces permettent de régler le problème de la planarité ou servir à des fins esthétiques.

Nous devons alors nous questionner en quoi les résultats de ce mémoire pourront soit mener vers de nouvelles recherches sur l’objet même, soit mener vers une nouvelle approche narratologique. En ce qui concerne les différentes recherches qui pourraient complémenter ce mémoire, plusieurs avenues sont possibles. Nous pourrions approfondir cette étude en construisant un plus grand nombre d’histoires et en incluant un plus grand nombre de théorèmes et définitions issues de la géométrie, de la théorie des graphes, de l’algèbre, de la géométrie différentielle, de la topologie et de la théorie des noeuds. Cet ajout servirait principalement à l’ajout de contraintes éventuelles dans la construction de sculptures narratives. Des considérations sur la réception de ces formes préalablement à la réception de l’histoire pourraient servir cette étude et guider le choix des formes.

Une deuxième avenue importante serait l’inclusion dans ce modèle du temps du récit. Par exemple, un temps d’histoire cyclique peut être représenté cycliquement dans le désordre afin de complexifier la lecture de ces histoires et favoriser la création d’intrigues. Une telle approche compliquerait considérablement notre modèle, mais ouvrirait la voie vers de multiples expérimentations. En effet, déjà la simple permutation de segments du temps de l’histoire peut alors être perçue comme la permutation de segments de surfaces. Nous pourrions par exemple construire un récit sur un cube Rubik dont il faudrait retrouver la forme initiale du temps de l’histoire.

Finalement, des études en cognition pourraient tenter d’évaluer l’influence de la lecture d’histoires complexes sur l’apprentissage des réseaux de concepts. Comme mentionné au premier chapitre, les vecteurs des schémas de Ryan sont des vecteurs d’incidences qui s’apparentent à des structures d’incidences logiques, c’est-à-dire que des évènements A,B,C peuvent mener vers des ‘’conclusions’’ D,E,F. L’apprentissage de réseaux d’incidences de concepts et théorèmes pourrait donc être facilité par la mise en contact avec de telles structures dès un bas âge. Il resterait à mesurer la valeur réelle d’une telle hypothèse.

Une autre conséquence éventuelle est celle d’un appel à la collaboration entre diverses disciplines dans l’élaboration et la construction des sculptures narratives. La collaboration entre les mathématiques et les arts visuels existe déjà dans la pratique, surtout depuis l’arrivée de l’ordinateur, mais cette collaboration reste encore discrète dans l’étude théorique de l’art visuel. Quoique plusieurs ouvrages relativement récents existent sur les relations entre les mathématiques et les arts, principalement au niveau des formes, ces ouvrages prennent habituellement la forme de collections d’articles. Les nombreux livres publiés sous la direction de Michèle Emmer ou de Claude Bruter en sont de parfaits exemples. Le


43-Celle d’un espace de Hausdorff avec une base dénombrable de sorte que le voisinage de tout point soit homéomorphe à un sous ensemble du plan cartésien.

44-Pour plus d’informations, nous recommandons le site suivant:

45-Pour une lecture plus complète sur le sujet :


47-Une série de dallages de la sphère peut être consultée sur le site

48- et

49-Il est possible de trouver cette histoire à l’adresse suivante :






55-Il existe en fait plusieurs manières de définir les ensembles d’obstruction qui impliquent des nombres différents d’obstructions, par exemple les obstructions topologiques et les obstructions de graphes mineurs. Les résultats donnés ici concernent les obstructions de graphes mineurs. Le site de Dan Archdeacon présente ces ensembles d’obstructions. (

56-Pour plus de détails sur la preuve de cette classification voir aussi l’article : Francis, George K. and Jeffrey R. Weeks. «Conway’s ZIP Proof». American Mathematical Society, 106 (1999), p. 393-399.


58-Pour une description formelle de cette surface :

Narration et mathématiques: L’utilisation des graphes au cinéma et en bande dessinée (Chapitre 1)


(La verion originale du mémoire peut être consultée ici:

Les approches interdisciplinaires, malgré les nombreuses difficultés qu’impose la double migration d’un vocabulaire spécialisé et qui résulte, inévitablement, de méthodologies qui diffèrent autant par leurs formes que par leurs objectifs, possèdent l’avantage de créer un lieu commun de discussion à partir duquel de nouvelles avenues peuvent être explorées. Les arts visuels et les mathématiques ont souvent profité de ces rapprochements qui ont su tisser des liens qui semblent désormais naturels tant leur mariage s’est avéré profitable. L’étude de la perspective vient couronner une telle approche. L’influence de ces rapprochements proposés à la Renaissance -entre le modèle mathématique de la perspective et le modèle issu de la théorie de l’art- sont à voir autant dans les peintures de l’époque que dans la création des environnements virtuels de nombreux films, jeux vidéo et autres dispositifs immersifs. Or, ces rapprochements ne se limitent pas simplement à la représentation de l’espace. Par exemple, la notion de symétrie, très riche dans l’art visuel non figuratif, est sujet d’étude dans plusieurs branches des mathématiques dont la géométrie et la théorie des groupes sont les chefs de file. Ces points de rencontre sont traités principalement du point de vue de la forme et de la nature de l’image, par conséquent la narratarologie s’en retrouve quelque peu exclue.

Dans ce mémoire, nous proposons une perspective commune entre les mathématiques et la narratologie, ce que nous pourrions nommée une narratologie mathématique. L’objet de cette recherche se restreint aux histoires en images, principalement à celles de la bande dessinée. Nous démontrons dans ce travail comment divers résultats issus des mathématiques permettent l’analyse de certaines structures narratives et, surtout, ouvrent la voie vers un grand nombre d’explorations. Par conséquent, le but de cette recherche est double. En premier lieu, il nous proposons un modèle d’analyse et, en second lieu, à partir de ce modèle nous proposons de nouvelles narrations. Nous divisons ce mémoire en quatre chapitres. Le premier présenter es principaux concepts qui seront utilisé dans les chapitres suivants. Nous y construisons également le modèle qui sera utilisé dans les trois autres chapitres. Nous conservons volontairement un point de vue abstrait dans ce premier chapitre car la présentation détaillée et appuyée d’exemples s’étale sur la suite du mémoire. Les chapitres deux et trois traitent principalement des histoires dont la structure reste relativement simple. Le chapitre trois, en introduisant les histoires cycliques, mène vers l’analyse de la complexité d’une histoire par l’analyse de certaines caractéristiques propres à ce support. L’analyse des histoires sur différents supports justifie l’analyse du point de vue des mathématiques. Le dernier chapitre présente le potentiel inexploré des narrations basées sur notre modèle en lien avec l’utilisation de différents supports.

Nous ne prétendons pas présenter la liste complète des différentes expérimentations reliées aux aspects traités dans chaque chapitre. La forme de base de l’argumentation de ce mémoire est constructiviste, par conséquent les exemples mentionnés servent en premier lieu à démontrer qu’il est possible d’appliquer le modèle d’analyse et en second lieu à démontrer qu’il est possible de construire de nouvelles narrations basées sur ces observations. Une liste exhaustive de ces différentes expérimentations s’avèrerait fort utile pour de futures recherches, mais tel n’est pas le cas pour le présent travail.

Chapitre 1 : Les fondements théoriques

Tel que mentionné dans l’introduction, cette recherche vise deux objectifs. Le premier est de développer un nouvel instrument d’analyse narratologique appliqué principalement aux domaines du cinéma et de la bande dessinée.

Le rapport particulier qu’entretient la bande dessinée avec la notion de surface place ce médium au centre de cette recherche. La surface du dessin, pour des raisons techniques, existe sous une multitude de formes qui motivent l’exploration faite dans ce mémoire. L’analyse peut évidemment s’élargir pour s’appliquer au domaine de l’étude littéraire, mais il n’en sera pas question directement ici puisque nous voulons principalement étudier le rapport entre l’image figurative et sa surface de représentation. Pour cette raison, nous puiserons principalement nos exemples dans les domaines du cinéma et de la bande dessinée. Dans le but de démontrer l’utilité de notre méthode d’analyse, nous analyserons la trame temporelle de trois films : Triangle (2009) de Christopher Smith, Primer  (2004) de Shane Carruth et Looper (2012) de Rian Johnson. Dans le cas de la bande dessinée, nous étudierons principalement des planches de Chris Ware ainsi que le travail de L’Ouvroir de Bande Dessinée Potentielle, l’OuBapo. Le collectif oubapien travaille principalement en Europe et une documentation plus complète sur son équivalent en Amérique du Nord se fait encore attendre, cela explique que les exemples seront essentiellement européens. Ces œuvres que nous analyserons ne couvrent malheureusement pas la totalité de ce qui peut être traité du point de vue de l’analyse, ce qui explique la deuxième intention de cette recherche, celle d’une exploration des potentialités narratives.

En plus de développer un nouvel outil d’analyse, nous proposerons des narrations basées sur les différentes observations qui seront faites dans l’élaboration de la théorie et de la présentation d’un modèle. Conformément à la définition du mot, le modèle sert autant à comprendre des narrations existantes qu’à prédire des narrations potentielles (1) (Herman, p. 452). Dans notre cas, la compréhension est celle des narrations que nous mentionnerons dans le texte et les prévisions sont les nouvelles narrations qui seront déterminées comme possibles selon ce modèle. Ces exemples pourraient être plus nombreux, mais nous nous limiterons à un petit nombre qui se démarquent par leur pertinence. Ils se veulent de nouvelles explorations dans le domaine des arts.

Dans le but de se procurer des exemples pertinents, nous avons fait des recherches dans un grand nombre d’ouvrages sur la bande dessinée, les comics, les comix et les romans graphiques. Nous avons élargi notre recherche dans le répertoire de la bande dessinée underground en espérant que son caractère plus expérimental amènerait à davantage d’explorations avec le médium. Nous y avons principalement décelé des expérimentations au niveau du style graphique et du contenu du récit. Des sujets tels que la sexualité ou la politique prennent généralement le premier plan narratif et des styles graphiques moins aisément lisibles ornementent souvent les pages. Or, nous ne nous intéressons qu’indirectement à ces composantes dans le cadre de ce mémoire.

Nous avons survolé une panoplie d’ouvrages théoriques et historiques sur la bande dessinée, en particulier les ouvrages de Thierry Groensteen et de Benoît Peeters. Nous avons également fréquemment  consulté des sites Internet ainsi que des ouvrages encyclopédiques tels que 1001 Bandes Dessinées qu’il faut avoir lu dans sa vie et The World Encyclopedia of Comics édité par Maurice Horn. Nous avons effectué un second volet de la recherche de bandes dessinées dans des collections privées et dans des magasins spécialisés à Montréal, Toronto, Portland et San Francisco.

La méthode d’analyse et de production narrative que nous explorerons dans ce texte se prête particulièrement bien au format de la bande dessinée. Le cinéma peut par bifurcation présenter des caractéristiques que cette méthode rend aisément compréhensibles. Cependant, il ne constitue pas la forme première du support dont il sera question. Ces résultats demeurent pertinents pour les études cinématographiques puisqu’ils présentent quelques limites du cinéma quant à la forme des différentes narrations qui s’adaptent bien à ce médium. Il en va de même avec la littérature. L’abstraction qu’il est possible d’atteindre en littérature permet bien de mener des explorations, mais seulement à l’intérieur de certaines limites. Nous aborderons brièvement ce sujet dans de ce texte.

Pour le cinéma, les films de science-fiction se rapprochent davantage des narrations rendues possibles par la méthode que nous proposons dans ce texte. Cela explique pourquoi le corpus étudié appartient principalement à la science-fiction et que nous délaissons quelque peu les autres genres. Un peu comme dans le cas de la bande dessinée underground, le film expérimental se distingue souvent de par le style graphique ou son contenu thématique, mais rarement sous une forme qui nous intéresse ici. Quelques exemples pertinents viendront de l’époque de la naissance du cinéma et des jouets d’optiques.

Finalement, afin de donner de l’expansion aux définitions et de trouver de nouvelles idées, autant pour la présente recherche que de possibles travaux ultérieurs, nous avons exploré différents domaines des mathématiques. La visite des domaines de la géométrie, de la théorie des graphes et de la topologie a été particulièrement enrichissante. Ces domaines ont servi autant comme exploration artistique que pour bien souder ensemble l’analyse qui sera faite dans ce texte.

La bande dessinée étant le format premier des expérimentations de cette recherche, il va de soi que le choix d’une définition est primordial. Or, il se trouve que dans notre cas la majorité des définitions s’appliquent difficilement. Cela découle directement du fait que ce mémoire a pour but d’apporter une exploration du médium afin d’en repousser les limites. Nous prendrons tout de même le soin de présenter brièvement quelques définitions présentes dans le milieu de pair avec le débat qui en découle et les différents problèmes de son application dans le cas présent.

La présence de plusieurs formes distinctes du médium a fait naître différentes appellations. Il est commun de trouver les formules art séquentiel, bande dessinée, roman graphique, comics et comix. La dénomination art séquentiel vient principalement du travail de Will Eisner Comics & Sequential Art et Scott McCloud la réutilise par la suite dans son ouvrage Understanding comics. La définition offerte par l’auteur se veut un concept global et c’est une particularité que nous voulons conserver. Eisner affirme que «Graphic Narrative may be defined as the employment of words and visual images in an intelligent and disciplined sequence to explain an idea or tell a story» (Eisner 2008, p. XI). Avec une définition un peu plus large qui permet d’inclure les suites d’images qui ne contiennent pas de mot, McCloud propose pour le mot comics la définition suivante : «Juxtaposed pictorial and other images in deliberate sequence,intended to convey information and/or to produce an aesthetic reponse in the viewer» (McCloud 1993,p. 9). L’avantage de restreindre la définition en ces composantes générale est de pouvoir inclure une série d’objets présents dans l’histoire de l’art qui partagent certaines caractéristiques communes avec la bande dessinée. Scott McCloud inclut par exemple les peintures rupestres, la tapisserie de Bayeux et les codex précolombiens dans ce qui est conçu généralement comme bande dessinée (1993, p. 10-13). L’utilisation d’un terme moins restrictif mène également à s’interroger sur les limites de cette définition.Nous pourrions par exemple définir le cinéma et les jouets optiques par l’art séquentiel. Dans notre cas, cela ne cause pas problème pour deux principales raisons : le modèle proposé dans ce travail peut s’appliquer aux histoires écrites pour les films et l’exploration des surfaces du dernier chapitre démontre bien que l’inclusion de ces explorations dans le cinéma ou le jeu vidéo peut s’avérer intéressante. Le but de cette recherche étant en partie d’explorer les différentes possibilités du médium, une définition plus large nous est utile et pour cette raison nous garderons les composantes essentielles de celle-ci. Nous rejoignons pleinement McCloud dans son affirmation « The best definition will be, I think, the mostexpansive » (1993, p. 199).


L’utilisation du terme comics a pris racine dans les publications de journaux et elle s’est épanouie principalement aux États-Unis au 20ième siècle. Le terme témoigne de la nature souvent humoristique des bandes dessinées de l’époque. Comme le démontre Gubern, cette popularité grandissante et l’évolution des comics de l’époque découlent en partie de la guerre des journaux américains, notamment de The World appartenant à Joseph Pulitzer et The Journal propriété de William Randolph Hearst (1972, p. 13, 24et 36). Ils favorisent en leurs débuts le format simple de quelques cases et plusieurs grands personnages sont issus de cette tradition. Les Kaztenjammer Kids de Rudolphe Dirks et Harold Knerr inspirés de Maxund Moritz de Wilheim Busch, ainsi que The Yellow Kid  par Richard Outcault sont des exemples de personnages qui ont vu le jour à cette époque. Les comics aux thématiques moins humoristiques se sont ensuite développés et du fantastique à l’aventure une grande variété de thèmes y a pris de l’expansion. Nous retrouvons quelques exemples qui explorèrent un peu plus le médium tels que Krazy Kat de George Herriman de 1913 à 1944, les curieux Upside-downs de Vermeek qui devaient être lus en tournant la feuille de 180° ainsi que l’œuvre de Winsor McCay Little Nemo in Slumberland . La grande distribution des comics dans les journaux est une composante qui influence Kunzel dans sa définition du mot en insérant comme composante essentielle la présence sur un support imprimé destiné à une distribution de masse (Groensteen 1999, p. 16). De manière similaire cette période historique est déterminante pour la définition de Blackbeards qui inclut dans la définition la publication régulière d’un personnage stable par épisode (Groensteen 1999, p.16). Tout comme Groensteen qui démontre l’insuffisance de cette définition par une série de contre exemples (1999, p. 19-20), nous ne souscrirons pas à cette perspective. Effectivement, la définition de Kunzle empêche d’inclure une bonne part de la bande dessinée underground et celle produite sur support numérique. La définition de Blackbeards exclue une panoplie d’œuvres destinées à ne pas avoir de suite.


Dans cette tradition se retrouvent habituellement les comics américains de suspense, horreur,aventure de guerre et science-fiction qui se multiplièrent dans les années 40-50. Les comics américain sont dû reformuler leur contenu avec la parution en 1954 de The Seduction of the Innocent du docteur Frederic Wertham qui joua un rôle majeur dans l’imposition de la censure via un comité qui portait le nom de The Comics Code Authority (Sabin 1996, p. 68). Le format des comics évolua au courant de la seconde moitié du 20ième siècle pour donner toute une palette d’œuvres qui couvre la majorité des nuances que nous pourrions faire entre comics et nouvelle graphique. En réponse à la censure et de concert avec la libération sexuelle, une forme particulière de bande dessinée underground a vu le jour. Certains auteurs tels qu’Estren ou Sabin s’y réfèrent en tant que comix(2). Ils contiennent souvent des styles graphiques assez variés, parfois « delibarately ugly » comme le souligne Douglas Wolk (2007, p. 40), et proposent desthèmes sur la politique, les drogues et la sexualité qui sont généralement exclus par la censure. La grande variété des formats des comix résulte quant à elle à la nature souvent indépendante des publications.

L’appellation bande dessinée est également largement utilisée dans les essais francophones. Une approche intéressante est celle de Thierry Groensteen et Benoît Peeters qui définissent la bande dessinée de pair avec son invention qu’ils attribuent à Rodolphe Töpffer au milieu du 19ième siècle (Peeters 1994,p.19). Ils attribuent cette invention à la coprésence de plusieurs éléments généralement présents dans le médium ainsi qu’à une réflexion propre à celui -ci par l’auteur. En effet, Töpffer publia un traité dephysiognomonie dans lequel il explore le style graphique des expressions faciales de personnages(3).

L’utilisation de la désignation de roman graphique est quant à elle assez récente et imputable à la popularité grandissante de bandes dessinées de plus grande envergure et abordant des thèmes tels que la politique, l’histoire, le cheminement personnel et des thèmes considérés comme plus matures (Sabin1996, p.8). Le premier livre à avoir porté l’appellation graphic novel sur sa couverture est le travail de Will Eisner A Contract With God paru en 1978 et traite de la crise d’un juif durant la Grande Dépression (VanLente et Dunlavey, p. 171). Comme le démontre Devid A. Beronä dans son ouvrage sur le roman graphique produit avant 1950, ce format n’est pas une nouveauté, notamment en Allemagne. La France a également produit de nombreux exemples d’œuvres parfois humoristiques qui abordent des thèmes complexes. Histoire pittoresque, dramatique et caricaturale de la Sainte Russie (1851) par Gustave Doré en est un bon exemple. Or, il reste que ce sont principalement des œuvres récentes qui ont popularisé la forme du roman graphique. Il y a dans cette liste le fameux Maus (1991) de Art Spiegelman et gagnant d’un prix Pulitzer, Persépolis de Marjane Satrapi, From Hell  d’Alan Moore et Jimmy Corrigan, the Smartest Kid on Earth de Chris Ware. Ces œuvres sont généralement plus longues que le classique format belge de 60  pages qui s’imposa en Europe, de plus elles possèdent généralement un style graphique propre à l’auteur et parfois même à l’œuvre en particulier.


Comme nous pouvons le constater, la bande dessinée présente historiquement plusieurs formes et courants et pour cette raison il existe différentes terminologies. Ne voulant pas exclure de notre analyse les différentes acceptations présentes dans la littérature sur le sujet nous en reviendrons à une définition plus générale que nous offre le terme «art séquentiel» de Will Eisner et Scott McCloud. Nous adhéronsau point de vue de Douglas Wolk qui souligne que la précision absolue d’une définition peut souvent exclure inutilement des exemples pertinents (2007, p.17). Nous nous fions en partie à l’intuition

du lecteur pour avoir une certaine connaissance des éléments qui définissent la bande dessinée ainsi qu’une certaine capacité d’adaptation quant aux nouveaux exemples que nous apporterons.

Afin de bien construire le modèle théorique que nous utiliserons dans ce mémoire, il nous faut nous appuyer sur diverses disciplines. Nous faisons ici une généralisation de ce qu’est ce modèle dont nous préciserons les détails au courant de cette recherche en nous aidant de plusieurs exemples.

Notre premier concept vient des études littéraires. Nous faisons usage du temps de l’histoire tel que défini par Genette et Müller. Ce temps de l’histoire, ce que Müller appelle erzӓhlte Zeit, est la succession présupposée des évènements dans l’univers diégétique (Genette, p. 77). Il se distingue principalement du temps du récit qui lui constitue l’ordre dans lequel les évènements sont relatés, donc présentés au lecteur. La réorganisation temporelle des évènements constitue un outil important et fort utile à la narration, mais dans le cadre de cette recherche nous travaillons uniquement avec le temps de l’histoire. Nous pourrions fort bien modifier ce modèle afin d’inclure le temps du récit, mais cela nous entraînerait dans de nombreuses complications que nous choisissons d’éviter dans cette recherche. Afin  de comprendre la complexité des narrations qu’il est possible de construire en se restreignant uniquement au temps de l’histoire, nous avons décidé d’exclure le découpage et les permutations des segments d’histoire. Par conséquent, nous excluons le temps du récit. Donc, toute histoire considérée dans ce texte l’est du point de vue du temps de l’histoire dans la perspective de Genette.

Une ligne du temps peut aisément servir à représenter ce temps de l’histoire. Pour ce faire, nous utilisons ici un concept issu des mathématiques et souvent utilisé en physique, la courbe paramétrée.Nous débuterons par une utilisation de cette courbe en deux dimensions, soit dans le plan cartésien, et une généralisation pour un plus grand nombre de dimensions sera ensuite possible. Une courbe paramétrée est une courbe dont les coordonnées sur l’axe des abscisses et l’axe des ordonnées dépendent tous deux d’un unique paramètre. Nous pouvons représenter la courbe paramétrée mathématiquement à l’aide d’équations de la forme C(t)=(f(t), g(t)) (Pressley, p. 2). C’est-à-dire que les fonctions f et g qui dépendent du paramètre t , le temps, peuvent définir ses coordonnées. Un exemple trivial de courbe paramétrée est C(t) =(t, 0). Cette courbe n’est en fait rien d’autre que l’axe des abscisses du plan cartésien dans lequel l’avancement en temps, ou de manière équivalente vers la droite, se fait proportionnellement au temps.

L’utilisation de la courbe paramétrée peut sembler arbitrairement abstraite, mais elle implique une multitude d’avantages non négligeables. Premièrement, elle permet de fixer à l’aide du paramètre t le temps de l’histoire que nous considérons. Évidemment, le temps diégétique de l’histoire commence habituellement avant le récit et continue également après le récit. Les récits démiurges ou apocalyptiques peuvent faire exception, mais en général il y a conception que le monde existait avant le début du récit et qu’il continuera d’exister après celui-ci. Nous pouvons à l’aide du paramètre t définir théoriquement le domaine temporel sur lequel l’histoire prend place. Deuxièmement, la courbe paramétrée se généralise en trois dimensions. D’autres avantages importants doivent être précisés, mais nous nous devons avant de présenter d’autres apports théoriques.

Dans notre modèle, la courbe paramétrée est le support de l’histoire, c’est-à-dire que nous insérons dans celle-ci les moments de l’histoire que nous voulons dévoiler. Autrement dit, les cases de l’histoire se présentent sur la courbe paramétrée. En considérant les différentes caractéristiques géométriques de cette courbe nous pouvons ajouter énormément à la valeur sémantique de l’histoire. La forme géométrique de l’histoire, ou de la courbe paramétrée sur laquelle elle se présente, peut devenir un outil pour l’artiste et conséquemment un outil d’analyse. Le paramètre peut être soit suivi avec précision ou servir simplement pour construire une courbe paramétrée ayant des caractéristiques voulues.

Dans Système de la Bande Dessinée, Thierry Groensteen apporte des nuances qu’il vaut la peine d’examiner. Un point que l’auteur considère comme particulier à la bande dessinée est la solidarité iconique, c’est-à-dire la double caractéristique des cases d’être à la fois graphiquement séparées mais sémantiquement reliées de par leur coprésence sur le support (Groensteen 1999, p. 21). Il mentionne également le terme spatio-topie, réunissant l’analyse de l’espace et du lieu. Il ajoute que ce néologisme aurait pu être évité avec la simple utilisation du mot géométrie (1999, p. 26). Puisque nous apporterons des nuances géométriques qui n’entrent pas directement avec les catégories de lieu ou d’espace, par exemple la topologie ou les pavages, nous utiliserons le terme spatio-topie avec parcimonie. Nous conservons aussi des idées reprises par Groensteen, celle de l’hypercradre apportée par Benoît Peeters (1999, p. 38) et celle de multicadre apportée par Henri Van Lier (1999, p. 31). Le multicadre, ou la forme de l’ensemble des vignettes, sera revu dans notre section sur le cadre et sera directement mis en relation avec l’hypercradre qui est la forme de la planche. Nous nous intéressons principalement à la forme de lacourbe paramétrée, non pas simplement à celles des vignettes. En partant de la vignette, Groensteen définit trois éléments importants pour la spatio-topie; la forme, la superficie et le lieu (1999, p. 36). Ces trois caractéristiques sont les éléments qui définissent les vignettes dans leur rapport au multicadre. Nos considérations seront principalement portées, comme vu précédemment, sur le lieu car nous analysons le positionnement des courbes paramétrées et des graphes sur différentes surfaces. Le positionnement peut créer un effet global, ou contenir des informations contenues dans les précisions sur le lieu de son positionnement, par exemple en se plaçant sur le plan cartésien. Nous ne discuterons pas beaucoup de la notion de superficie même si elle fait parfois partie des grands problèmes mathématiques comme l’est l’impossible quadrature du cercle. Pour résumer, l’étude porte principalement sur le multicadre en tant que coprésence d’images certes, mais d’images reliées entre elles par les courbes paramétrées. Groensteen précise la nature de la solidarité iconique par la notion d’arthrologie qu’il définit comme l’ensemble des relations qui relient les images qui coexistent dans l’espace de la solidarité iconique (1999,p. 25). Dans notre cas, puisque nous nous intéressons surtout à la coexistence des courbes paramétrées qui, elles, contiennent les cases, nous pouvons considérer cette recherche en partie comme une analyse arthrologique macroscopique, une étude des regroupements de cases en soi et en lien avec l’espace qui les soutient, donc en lien avec la spatio-topie. Cette analyse se fait de pair avec les espaces laissés vacants par les trames narratives et dont la juxtaposition aux courbes paramétrées permet les pavages de l’espace.

Puisque l’idée de surface demeure une considération primordiale tout au long du texte, nous discutons parallèlement les notions de recouvrements de l’espace au courant du texte. C’est la raison pour laquelle nous nous intéressons à l’espace des courbes ainsi qu’à l’espace laissé vacant par celles-ci. Les outils généralement utilisés pour les dénombrements des types de recouvrements des surfaces par des figures semblables découlent du domaine de la cristallographie, de l’article de George Pólya et Haag (Schattschneider 1992, p. 22-30) et de la théorie des groupes (Armstrong, p. 145-172) tout comme il en a été le cas avec certaines œuvres de l’artiste M.C. Escher. Les terminologies étant souvent multiples ou utilisées pour décrire des structures plus imposantes, comme les groupes de Coxeter ou les orbifold (Conway et Huson, p. 247-257), nous utiliserons la notation issue de la cristallographie sans en explique la mécanique.

Le prochain apport significatif est celui de la théorie du récit de Marie-Laure Ryan qui permet aisément de mettre en lien les principes de l’hypercadre, du multicadre des courbes paramétrées et l’arthrologie. Le but de l’insertion du modèle de Ryan est de comparer les différentes représentations graphiques des histoires et récits afin d’en comprendre les avantages et désavantages. Dans son ouvrage Possible Worlds, Artificial Intelligence, and Narrative Theory, l’auteure construit des schémas de récits qui incluent autant les évènements possibles ou imaginés que réels dans le contexte diégétique. Les premières constructions sont les Plot-maps (Ryan, p. 156-157) et les State-Transition Diagrams qui représentent par des réseaux en flèches la concordance ou divergence des histoires réelles ou imaginées dans la diégèse. Les flèches dans ce modèle sont en fait des vecteurs. Le sens de ces flèches est celui d’une implication logique ou de fait. Dans le cas des bouts de récits qui sont imaginés, ces vecteurs déterminent ce qui devrait découler logiquement de telle ou telle situation ou décision. Si Ryan base son modèle sur le concept de point narratif de William Labov et amélioré par Robert Wilensky, concept qui définit les points reliés par les vecteurs de son modèle et qui constituent les éléments importants de l’histoire racontée (Ryan, p. 150-154), nous délaissons cette précision dans notre modèle qui lui ne souligne que les points que le narrateur choisit de représenter sans préciser aucun autre détail quant à leur importance pour le récit.

Les modèles de Ryan ont plusieurs avantages et désavantages. Premièrement, ces modèles sont extrêmement utiles à la compréhension globale d’un récit. La vision macroscopique du récit permet de le saisir rapidement dans son ensemble et d’en percevoir aisément les différentes composantes importantes autant dans ce qui se passe réellement que dans ce qui est imaginé. Nous conserverons cette caractéristique qu’est le point de vue macroscopique de l’histoire. Cependant, comme mentionné préalablement, nous travaillons pour l’instant que sur le temps de l’histoire, donc tous les éléments imaginés disparaissent de ce modèle. Deuxième avantage en concordance avec notre modèle, les points narratifs présentés par Ryan sont des éléments de l’histoire tels qu’ils se déroulent dans l’ordre du temps de l’histoire. La courbe paramétrée ne représente que l’évolution temporelle d’un seul lieu et si possible d’un seul personnage, elle équivaut à une lignée de points et de vecteurs dans les schémas de Ryan.

Nous faisons usage de ce modèle dans une version qui se restreint à l’histoire racontée seule, donc une version qui exclue les segments simplement possibles ou imaginés du récit. De plus, l’usage des vecteurs comme liens entre les évènements est fort utile pour la compréhension de l’histoire, mais nous utilisons à la place la courbe paramétrée comme trame générale de l’histoire puisque ces courbes nous permettent de mieux nous servir de théorèmes issus de la théorie des graphes, de la géométrie différentielle et de la topologie. Autrement dit, au lieu d’avoir une suite de vecteurs qui passent d’un élément du récit à un autre, nous avons une courbe paramétrée qui passe par ces différents points.

Or, quelle est l’histoire précise qui suit continuellement cette courbe paramétrée? Dans le domaine de la physique, ces courbes servent parfois à représenter le déplacement d’une particule dans l’espace. De manière similaire, une courbe paramétrée peut suivre l’évolution dans le temps d’un espace discret. Dans notre modèle, cette courbe suit généralement l’espace discret autour d’un personnage et ainsi, de manière équivalente, son évolution temporelle. Nous pouvons généraliser ce principe à un univers diégétique au complet. Des exemples préciseront ces nuances. Sur cette courbe paramétrée peuvent ensuite apparaître des cases contenant les éléments précis que le narrateur décide de présenter. Contrairement aux points narratifs de Labov et Wilensky ces éléments ne sont pas obligatoirement importants, le narrateur ne fait que les présenter.

Le modèle proposé peut contenir simultanément plusieurs courbes paramétrées en associant à chacune d’elles l’histoire autour d’un personnage. Cela permet une présentation simultanée de toute l’histoire similairement au modèle de Ryan, mais construite à partir l’évolution temporelle de chaque personnage au lieu d’une suite logique de faits. De plus, cette représentation macroscopique de l’histoire peut jouer le rôle du récit. C’est-à-dire que l’œuvre d’art qui représente cette ou ces histoires est la schématisation macroscopique de celle-ci. Cette caractéristique est un aspect fondamental qui permet une exploration nouvelle du média. Il existe évidemment des exemples qui se rapprochent de ce que nous explorons dans ce mémoire et nous les considérons au courant du texte autant pour les explorations qui en découlent que pour les limitations qu’ils apportent. Comme le mentionne Groensteen, la totalité de l’espace couvert par l’ensemble des cases est essentiel à la bande dessinée: « En résumé, les codes se tissent à l’intérieur d’une image à une chaîne narrative dont les maillons sont étalés dans l’espace, en situation de coprésence » (Groensteen 1999, p. 8).

Un modèle tel que celui de Ryan peut facilement se porter à cette extension et faire de la présentation d’une histoire avec ses éléments réels ou imaginés une œuvre d’art en soi. On l’exclut de cette analyse pour l’instant pour deux raisons. En précisant notre analyse sur l’histoire, nous pourrons facilement analyser les différentes œuvres nommées précédemment. En second lieu, cela ne confère aucune caractéristique supplémentaire quant aux différentes observations apportées dans le texte se rapportant à la restriction au temps de l’histoire. Il est alors préférable d’entamer cette analyse dans une forme plus simple, n’utilisant que le temps de l’histoire.

Pour l’instant, nous constatons en quoi ce modèle permet de reprendre les notions de multicadre, d’hypercadre et d’arthrologie puisqu’une fois que nous considérons la représentation macroscopique de l’histoire ou de l’ensemble des histoires comme œuvre d’art en soi, les concepts ci-mentionnés s’emboîtent naturellement de manière hiérarchique. Nous avons la case, le multicadre qui regroupe les différentes cases et leur hypercadre; au lieu de disposer les multicadres sur différentes feuilles dans un album, nous les juxtaposons en une seule représentation globale de l’histoire qui elle-même devient récit. Certains trouveront un lien direct avec le canevas infini de McCloud. Nous discuterons ce concept, mais nous devons encore enrichir le bagage théorique afin de bien préparer le terrain pour le concept de McCloud.

Une fois que nous considérons ces histoires d’une perspective macroscopique, nous pouvons aller un pas plus loin dans leur représentation abstraite. Comme le mentionne Bernard Teissier, nous pouvons considérer ces histoires du point de vue de la théorie des graphes puisque la narration « provides vicariously the experience of a path (or a graph) of interactions among character » (Teissier, p. 232). Nous nous devons alors de définir ce qu’est un graphe, ce qu’est une représentation d’un graphe et finalement voir en quoi et sous quelle forme cela peut nous servir. Un graphe est un ensemble d’éléments qui peuvent être mis en liens. Ces liens sont nommés relations. Une représentation naturelle des graphes est de considérer les éléments comme étant des points et les relations comme étant des lignes reliant ces points deux à deux. Dans le jargon des mathématiques les points sont nommés sommets et les lignes arêtes (Bollobàs, p. 1). Dans notre cas, les arêtes sont des segments de courbes paramétrées, et donc segments temporels. Les sommets sont des points de rencontre auxquels nous voulons associer un évènement propre à plusieurs histoires, donc à plusieurs courbes paramétrées, possiblement le début ou la fin de certaines d’entre elles.

Il va de soi que les arêtes de ces graphes aient un sens de lecture, le sens d’avancement du paramètre t, le temps. Nous dirons dans ce cas que le graphe est orienté puisque les arêtes possèdent un sens (Bondy, p. 31). Nous pouvons alors faire une analyse des histoires sous ce modèle à partir de la théorie des graphes orientés. Il se trouve que certaines caractéristiques qui nous intéressent se conservent même lorsque nous oublions le sens de lecture des arrêtes. C’est pourquoi nous ferons l’analyse de l’histoire sous leur forme de graphe principalement dans l’optique des graphes non-orientés.

L’avantage de faire appel à la théorie des graphes est qu’un grand nombre de théorèmes peuvent nous aider à comprendre les caractéristiques propres à certaines structures d’histoires ainsi que certaines limitations de ces structures. Nous étudierons la cyclicité, c’est-à-dire la présence de chemins qui débutent et se terminent au même sommet (Bondy, p. 4). Nous pouvons également déterminer si le graphe est eulérien, c’est-à-dire s’il est possible de parcourir toutes les arêtes en ne passant par chaque arête qu’une seule fois (Bondy, p.86). Dans le cas d’un graphe orienté ces définitions sont conservées mais le sens des arêtes doit être respecté (Bondy, p. 33 et 91). La raison pour laquelle nous nous réapproprions ces concepts est que cela nous permet d’analyser des histoires qui possèdent des structures fort complexes et presqu’impossible à déchiffrer si l’on n’en fait pas une représentation graphique. Il en estainsi pour les films Primer  et Triangle. Une autre motivation vient du fait qu’en créant un cycle, on délimite également un espace qui peut ensuite servir à la sémantique de l’histoire, cette caractéristique provient directement d’un théorème dû à Camile Jordan(4) que nous présenterons dans la section sur le cadre (Jordan, p. 589-590).

Il est important d’ajouter une nuance concernant cet ajout de la théorie des graphes: la confusion possible entre les concepts de structure et de géométrie (et donc aussi entre le récit et le récit-carte(5)). Ce qui importe à la base dans la théorie des graphes ce sont les liens entre les différents sommets, non pas la forme géométrique de ces liens, ni leur disposition dans l’espace. Par exemple, qu’une arête soit rectiligne ou courbe n’importe aucunement. Qu’une ligne soit horizontale ou verticale revient au même et tout polygone à quatre cotés équivaut à un carré, peu importe la disposition des quatre sommets ou de la longueur des arêtes. Donc, à prime abord et à moins d’avis contraire, tout résultat qui sera présenté à propos d’un graphe sera fait dans cette optique. Évidemment, il est ensuite possible d’ajouter des considérations géométriques dans la recherche de résultats ou dans la construction d’une œuvre. Un théorème peut préciser qu’il concerne seulement des segments rectilignes ou la disposition des sommets d’une histoire peut avoir une incidence sémantique. Cette double facette de l’utilisation des graphes -et des surfaces comme nous le verrons- comme modèle découle du fait que le modèle est à la fois symbolique et iconique selon les termes de Frey (Herman, p.252). C’est-à-dire qu’ils sont idéogrammes par les concepts qu’ils évoquent par conventions et diagrammes par leurs ressemblances visuelles aux concepts qu’ils peuvent représenter (Herman, p. 455).

Le concept de canevas infini apporté par McCloud dans son ouvrage Reinventing comics se trouve en lien direct avec une autre caractéristique des graphes. Le canevas infini de McCloud est en fait une surface virtuelle sur laquelle peut se construire l’art séquentiel, ou la bande dessinée. Sur son site Internet il discute des avantages à travailler sur une seule surface, « putting all panels together on a single”canvas”» ( Il les met principalement en lienavec la publication de la bande dessinée sur Internet. Ce canevas est particulièrement approprié pour l’écriture et l’analyse des hypercomics, ou bandes dessinées partiellement interactives construites enpallier. Daniel Merlin Goodbrey en donne la définition suivante: «A hypercomic can be thought of as awebcomic with a multi-cursal narrative structure. In a hypercomic the choices made by the reader mayinfluence the sequence of events, the outcome of events or the point of view through which events areseen. »( Libéré du format papier et du livre, le canevas virtuel surinternet peut en effet prendre une infinité de formes. Il en donne quelques aperçus dans certaines cases,mais il ne va pas davantage dans cette direction. Il fait également indirectement référence à un support autre que le Web. Il est possible de voir quelques exemples qu’il offre dans son ouvrage. Il mentionne l’écriture sur le cube (McCloud 2000, p. 223), et sur un cylindre comme dans le cas de la colonne de Trajan(2000, p.228). Soulignons de plus qu’une des particularités du canevas infini est le principe d’équivalence entre distance et temps ( comme pour la courbe paramétré C(t)=(t, 0), axiome d’équivalence qui ne semble pas toujours être respecté dans les hypercomics.

Ce que nous tentons de faire finalement dans cette recherche est d’offrir des pistes d’exploration de ce canevas en fonction de certaines théories mathématiques déjà existantes. Ces explorations ne sont pas restrictives ni à un seul plan infini comme le défini McCloud ni à un support numérique. Plusieurs recherches, plus précisément dans le domaine de la théorie topologique des graphes, explorent les possibilités de dessiner certains graphes sur diverses surfaces selon un critère dit de planarité. Dans cette perspective, nous présenterons premièrement le théorème de Kuratowski qui définit certains critères qui garantissent la planarité d’un graphe sur le plan ou la sphère (6). (Gross et Tucker, p. 42-49) Nous analyserons deux types de surfaces sous la lumière du critère de planarité, les surfaces orientables et non-orientables. Pour donner un exemple de surface orientable nous pouvons considérer la sphère ou le tore (Gross et Tucker, p. 119-120). L’exemple le plus populaire de surface non orientable est le ruban de Moebius (Pressley, p. 76-77), parfois appelé ruban de Lao Tseu en vertu de l’utilisation qu’en fît le philosophe chinois pour représenter le yin et le yan (Cazenave, p. 731). Il en existe en fait une infinité d’autres. Dans le dernier chapitre nous entamerons une exploration des différentes possibilités de représenter des histoires graphiques sur différentes surfaces qu’elles soient physiquement possible ou non, comme par exemple la bouteille de Klein (Barr, p. 62-63). Le canevas infini, dépendamment de ces considérations, peut prendre une forme réelle, sculpté, ou simplement être représentable via certaines stratégies dont le numérique offre plusieurs exemples.

Encore une fois, la topologie amène son lot de complications. Un peu comme pour la théorie des graphes, la topologie se penche sur des informations structurelles, les invariants topologiques, qui demeurent intactes si nous n’appliquons que des torsions et étirements sur l’objet étudié (Barr, p. 2-3).Par exemple, du point de vue de la topologie les polyèdres et la sphère ne sont pas différentiables puisqu’ils conservent la même caractéristique d’Euler (Barr, p. 10-11). C’est-à-dire que la soustraction des arêtes à la somme des sommets et des faces reliés à un graphe planaire donne le même résultat sur les deux surfaces. Tout comme précédemment, nous débutons par la perspective purement topologique avant de réintroduire des considérations plus géométriques. Nous explorons les surfaces progressivement afin de découvrir le plus grand potentiel intrinsèque à chaque surface. Le plan est naturellement la première surface considérée et en raison de sa grande simplicité nous éviterons presqu’entièrement les considérations topologiques. Nous retarderons l’utilisation de la topologie vers le dernier chapitre lorsque nous rencontrerons des surfaces plus complexes(7).

Mentionnons un dernier apport puisque qu’il dictera une certaine méthodologie utilisée dans cette recherche. Cet apport est double, il vient en fait de l’OuLiPo, principalement de Raymond Queneau, et de la combinatoire. Pour reprendre les termes de Marcel Bénabou sur l’OuLiPo, « Le recours à la méthode axiomatique, l’importation de concepts mathématiques, l’utilisation de la combinatoire sont les axes principaux de cette exploration » (OuBaPo 1996, p. 3). Comme il en a été avec Queneau, l’idée de dénombrement sera importante. Dans plusieurs cas, nous offrons les dénombrements des possibilités qu’engendrent les types de graphes considérés. Cela permet premièrement de nous plonger plus en  profondeur dans les différentes structures avec lesquelles nous travaillons ainsi que d’introduire le lecteur à une connaissance de base du type d’arguments qui soutiennent les résultats mathématiques qui seront pris en compte. Nous recyclons également l’idée de contrainte. L’ensemble du mémoire peut être perçu comme une longue série de constructions de contraintes. Les modèles d’histoires que nous proposons à chaque section sont des histoires qui exemplifient les concepts tout autant qu’elles fonctionnent dans les limites des contraintes explorées. Afin de donner suite au premier bouquet de contraintes de Thierry Groensteen (8) et pour permettre au lecteur et aux oubapiens assidus d’apprivoiser les concepts et possibilités, nous offrons une série d’exemples au courant de chaque section.

Résumons la démarche que nous avons entreprise dans ce mémoire. En considérant le temps de l’histoire d’un personnage comme étant une courbe paramétrée, il nous est possible de transformer la représentation macroscopique d’une histoire en œuvre d’art. Cette représentation, à sans être un art peut s’avérer être un outil d’analyse efficace dans certains films de fiction. Cette représentation peut avoir des caractéristiques géométriques ou structurelles qui dépendent du canevas, c’est-à-dire qui dépendent de la surface sur laquelle la représentation macroscopique de l’histoire est déposée. L’analyse porte principalement sur les différentes formes structurelles possibles, principalement pour les histoires cycliques. La dénomination de sculpture narrative sert à se référer à ces entités dans leur ensemble. Cette formule sert donc à définir la représentation du récit comme série d’images reliées entre elles par une ou  plusieurs histoires sur des surfaces qui peuvent être possibles dans le monde réel ou non. Le terme inclut également l’apport des principes mathématiques nécessaires à la compréhension de ces œuvres.


1-Herman discute cette définition qu’il trouve dans l’Oxford English Dictionary.

2-Voir dans les ouvrages de Roger Sabin (Comix & Graphic Novels: A Histor of Comic Art. New York: Phaidon Press, 1996) et de Mark JamesEstren (A History of Underground Comics. Berkeley: Ronin Publishing, 1993).

3- Une publication de cet essai est disponible de dans le livre de Thierry Groensteen et Benoît Peeters (Töpffer: L’Invention de la Bande Dessinée. Paris: Hermann, Éditeurs des Sciences et des Arts, 1994).

4-Pour une version topologique de la preuve voir Munkres, James R. Topology . 2nd Ed. New Jersey: Prentice Hall, Inc., 2000, p. 385-389.Plusieurs preuves du théorème existent, entre autres, des preuves par Ronald Bron, J.W. Alexander et Helge Tverberg sont disponibles.

5-Récit dont le lieu précis des actions est important à la compréhension de l’histoire.

6- La prevue présentée dans cet ouvrage est une organisation due à Thomassen, la preuve originale de Kuratowski peut être trouvée dans Kuratowski (1930).

7- Le mot surface peut apporter des complications qui ne seront pas traitées dans ce texte. Le lecteur intéressé peut se référer à des ouvrages de topologie et de géométrie différentielle pour une définition mathématique des surfaces.

8- Voir l’article de Thierry Groensteen: « Un Premier Bouquet de Contraintes ». Dans Oubapo : oupus 1. Édité par L’Association. Paris: L’Association, 1996, p. 13-59.